Breast Cancer Subtype-Specific Organotropism is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery.

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2024-11-26 DOI:10.1158/0008-5472.CAN-24-0479
Wen-Jing Jiang, Tian-Hao Zhou, Huan-Jing Huang, Lin-Sen Li, Hao Tan, Rui Zhang, Qing-Shan Wang, Yu-Mei Feng
{"title":"Breast Cancer Subtype-Specific Organotropism is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery.","authors":"Wen-Jing Jiang, Tian-Hao Zhou, Huan-Jing Huang, Lin-Sen Li, Hao Tan, Rui Zhang, Qing-Shan Wang, Yu-Mei Feng","doi":"10.1158/0008-5472.CAN-24-0479","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer subtypes display different metastatic organotropism. Identification of the mechanisms underlying subtype-specific organotropism could help uncover potential approaches to prevent and treat metastasis. Herein, we found that FOXF2 promoted the seeding and proliferative recovery from dormancy of luminal breast cancer (LumBC) and basal-like breast cancer (BLBC) cells in the bone by activating the NF-κB and BMP signaling pathways. Conversely, FOXF2 suppressed the seeding and proliferative recovery of BLBC cells in the lung by repressing the TGF-β signaling pathway. FOXF2 directly upregulated RelA/p65 transcription and expression in LumBC and BLBC cells by binding to the RELA proximal promoter region, and RelA/p65 bound to the FOXF2 proximal promoter region to upregulate expression, forming a positive feedback loop. Targeting the NF-κB pathway efficiently prevented the metastasis of FOXF2-overexpressing breast cancer cells to the bone, while inhibiting TGF-β signaling blocked the metastasis of BLBC with low FOXF2 expression to the lung. These findings uncover critical mechanisms of breast cancer subtype-specific organotropism and provide insight into precision assessment and treatment strategies.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-0479","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer subtypes display different metastatic organotropism. Identification of the mechanisms underlying subtype-specific organotropism could help uncover potential approaches to prevent and treat metastasis. Herein, we found that FOXF2 promoted the seeding and proliferative recovery from dormancy of luminal breast cancer (LumBC) and basal-like breast cancer (BLBC) cells in the bone by activating the NF-κB and BMP signaling pathways. Conversely, FOXF2 suppressed the seeding and proliferative recovery of BLBC cells in the lung by repressing the TGF-β signaling pathway. FOXF2 directly upregulated RelA/p65 transcription and expression in LumBC and BLBC cells by binding to the RELA proximal promoter region, and RelA/p65 bound to the FOXF2 proximal promoter region to upregulate expression, forming a positive feedback loop. Targeting the NF-κB pathway efficiently prevented the metastasis of FOXF2-overexpressing breast cancer cells to the bone, while inhibiting TGF-β signaling blocked the metastasis of BLBC with low FOXF2 expression to the lung. These findings uncover critical mechanisms of breast cancer subtype-specific organotropism and provide insight into precision assessment and treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌亚型特异性器官转移受 FOXF2 调节的转移蛰伏和恢复的支配
乳腺癌亚型表现出不同的转移性器官移动性。鉴定亚型特异性器官向性的机制有助于发现预防和治疗转移的潜在方法。在本文中,我们发现FOXF2通过激活NF-κB和BMP信号通路,促进腔隙性乳腺癌(LumBC)和基底样乳腺癌(BLBC)细胞在骨中播种并从休眠中恢复增殖。相反,FOXF2通过抑制TGF-β信号通路,抑制了BLBC细胞在肺部的播种和增殖恢复。FOXF2通过与RELA近端启动子区域结合,直接上调LumBC和BLBC细胞中RelA/p65的转录和表达,而RelA/p65则与FOXF2近端启动子区域结合,上调表达,形成正反馈回路。靶向NF-κB通路可有效阻止FOXF2表达量低的乳腺癌细胞向骨转移,而抑制TGF-β信号传导则可阻止FOXF2表达量低的BLBC向肺部转移。这些发现揭示了乳腺癌亚型特异性器官转移的关键机制,为精准评估和治疗策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
Adapt or Perish: Efficient Selenocysteine Insertion is Critical for Metastasizing Cancer Cells. Breast Cancer Subtype-Specific Organotropism is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Chromatin Helicase CHD6 Establishes Pro-inflammatory Enhancers and is a Synthetic Lethal Target in FH-Deficient Renal Cell Carcinoma. Fungal Influences on Cancer Initiation, Progression, and Response to Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1