Gestational and early postnatal protein malnutrition disrupts neurodevelopment in rhesus macaques.

IF 2.9 2区 医学 Q2 NEUROSCIENCES Cerebral cortex Pub Date : 2024-11-05 DOI:10.1093/cercor/bhae462
Joshua A Karpf, Elinor L Sullivan, Victoria H J Roberts, Colin Studholme, Charles T Roberts, Christopher D Kroenke
{"title":"Gestational and early postnatal protein malnutrition disrupts neurodevelopment in rhesus macaques.","authors":"Joshua A Karpf, Elinor L Sullivan, Victoria H J Roberts, Colin Studholme, Charles T Roberts, Christopher D Kroenke","doi":"10.1093/cercor/bhae462","DOIUrl":null,"url":null,"abstract":"<p><p>Adequate nutrition during gestation is critical for fetal development, and deficits in protein are associated with neurological and behavioral impairments in offspring placing a significant burden on global health. Fetal and neonatal longitudinal magnetic resonance assessments of brain development spanning mid-gestation to 11 months of age were conducted in rhesus macaque (Macaca mulatta) (n = 22; 9 females) generated from an established nonhuman primate model of gestational protein reduction to ascertain the neurodevelopmental effects of reduced maternal protein intake. Structural abnormalities were identified in two reduced diet groups, in addition to age-dependent whole-brain volume deficits in the most severely reduced (50% vs. 33% reduction) protein cohort, primarily restricted to gray matter structures; i.e. cortical/subcortical gray matter and the cerebellum. Diffusion-weighted imaging revealed widespread postnatal reductions in white matter fractional anisotropy, concentrated in the corpus callosum for both reduced protein levels relative to control diet. Despite extensive neurodevelopmental alterations detectable by longitudinal imaging, early behavioral assessments conducted at 1 month revealed minor perturbations. These results highlight differential impacts of reduced maternal and infant protein intake on gray and white matter formation and organization, with potential implications for early motor development.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adequate nutrition during gestation is critical for fetal development, and deficits in protein are associated with neurological and behavioral impairments in offspring placing a significant burden on global health. Fetal and neonatal longitudinal magnetic resonance assessments of brain development spanning mid-gestation to 11 months of age were conducted in rhesus macaque (Macaca mulatta) (n = 22; 9 females) generated from an established nonhuman primate model of gestational protein reduction to ascertain the neurodevelopmental effects of reduced maternal protein intake. Structural abnormalities were identified in two reduced diet groups, in addition to age-dependent whole-brain volume deficits in the most severely reduced (50% vs. 33% reduction) protein cohort, primarily restricted to gray matter structures; i.e. cortical/subcortical gray matter and the cerebellum. Diffusion-weighted imaging revealed widespread postnatal reductions in white matter fractional anisotropy, concentrated in the corpus callosum for both reduced protein levels relative to control diet. Despite extensive neurodevelopmental alterations detectable by longitudinal imaging, early behavioral assessments conducted at 1 month revealed minor perturbations. These results highlight differential impacts of reduced maternal and infant protein intake on gray and white matter formation and organization, with potential implications for early motor development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
妊娠期和产后早期蛋白质营养不良会破坏猕猴的神经发育。
妊娠期间充足的营养对胎儿的发育至关重要,而蛋白质的缺乏与后代的神经和行为障碍有关,对全球健康造成了重大负担。为了确定母体蛋白质摄入减少对神经发育的影响,研究人员对从妊娠中期到 11 个月大的猕猴(雌性 9 只,雄性 22 只)进行了胎儿和新生儿大脑发育纵向磁共振评估。在两个蛋白质摄入减少的组别中发现了结构异常,此外,蛋白质摄入减少最严重(50% 对 33%)的组别中还发现了与年龄相关的全脑体积缺陷,主要局限于灰质结构,即皮层/皮层下灰质和小脑。扩散加权成像显示,出生后白质分数各向异性普遍降低,与对照组饮食相比,蛋白质水平降低的两个组群都集中在胼胝体。尽管纵向成像可检测到广泛的神经发育改变,但在1个月时进行的早期行为评估发现了轻微的干扰。这些结果突显了母婴蛋白质摄入量减少对灰质和白质形成和组织的不同影响,并对早期运动发育具有潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
期刊最新文献
Developmental maturation of millimeter-scale functional networks across brain areas. Amygdala-centered fusional connections characterized nonmotor symptoms in Parkinson's disease. MDD-SSTNet: detecting major depressive disorder by exploring spectral-spatial-temporal information on resting-state electroencephalography data based on deep neural network. Genetic analyses identify brain functional networks associated with the risk of Parkinson's disease and drug-induced parkinsonism. Exploring common and distinct neural basis of procrastination and impulsivity through elastic net regression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1