Optimization of Preparation Technology for PET-Based Carbon Dots by Response Surface Method and Its Application.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2024-11-26 DOI:10.1007/s10895-024-04037-5
Chaohui Ma, Gaoling Jin, Puzhen He, Chuanjiang Tang, Linhan Bing, Botong Liu, Hanjiang Huang, Yu Fan, Rui Wang, Jianfei Wei
{"title":"Optimization of Preparation Technology for PET-Based Carbon Dots by Response Surface Method and Its Application.","authors":"Chaohui Ma, Gaoling Jin, Puzhen He, Chuanjiang Tang, Linhan Bing, Botong Liu, Hanjiang Huang, Yu Fan, Rui Wang, Jianfei Wei","doi":"10.1007/s10895-024-04037-5","DOIUrl":null,"url":null,"abstract":"<p><p>The preparation of polyethylene terephthalate(PET)-based Carbon Dots (PET-CDs) using one-step hydrothermal method with PET waste, pyromellitic acid (PMA) and ammonia (NH<sub>3</sub>·H<sub>2</sub>O) as precursors is a high-value utilization strategy for PET waste, offering significant application potential. To achieve efficient recycling of PET waste, response surface methodology was adopted for to optimize the precursor ratio during the synthesis of PET-CDs with fluorescence quantum yield (QY) as the key performance indicator. The optimal preparation conditions were determined to be: 1.180 g of PET, 3.287 g of PMA, 8.969 mL of NH<sub>3</sub>·H<sub>2</sub>O, a reaction temperature of 260 °C, and a reaction time of 12 h. The as-prepared PET-CDs exhibit excitation-independent emission properties in the range from 360 nm to 440 nm, with the optimal excitation wavelength of 410 nm and the optimal emission wavelength was 485 nm, resulting in a QY of 83.34%. Structurally, PET-CDs exhibit a spherical morphology, featuring amino and carboxyl groups on their surface, with the particle size ranging from 1.61 to 4.92 nm and an average particle size of 2.88 nm. The prepared PET-CDs can be utilized in light-blocking films (LBFs) and fluorescence anti-counterfeiting technologies. The intensity of light passing through the LBFs significantly is decreased in the ultraviolet and blue light wavelength ranges, with performance comparable to commercial anti-blue light glasses. Additionally, the PET-CDs solution can be adopted for printing patterns that are visible under ultraviolet excitation and are not visible in visible light, demonstrating that PET-CDs can be employed in fluorescence anti-counterfeiting measures.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04037-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The preparation of polyethylene terephthalate(PET)-based Carbon Dots (PET-CDs) using one-step hydrothermal method with PET waste, pyromellitic acid (PMA) and ammonia (NH3·H2O) as precursors is a high-value utilization strategy for PET waste, offering significant application potential. To achieve efficient recycling of PET waste, response surface methodology was adopted for to optimize the precursor ratio during the synthesis of PET-CDs with fluorescence quantum yield (QY) as the key performance indicator. The optimal preparation conditions were determined to be: 1.180 g of PET, 3.287 g of PMA, 8.969 mL of NH3·H2O, a reaction temperature of 260 °C, and a reaction time of 12 h. The as-prepared PET-CDs exhibit excitation-independent emission properties in the range from 360 nm to 440 nm, with the optimal excitation wavelength of 410 nm and the optimal emission wavelength was 485 nm, resulting in a QY of 83.34%. Structurally, PET-CDs exhibit a spherical morphology, featuring amino and carboxyl groups on their surface, with the particle size ranging from 1.61 to 4.92 nm and an average particle size of 2.88 nm. The prepared PET-CDs can be utilized in light-blocking films (LBFs) and fluorescence anti-counterfeiting technologies. The intensity of light passing through the LBFs significantly is decreased in the ultraviolet and blue light wavelength ranges, with performance comparable to commercial anti-blue light glasses. Additionally, the PET-CDs solution can be adopted for printing patterns that are visible under ultraviolet excitation and are not visible in visible light, demonstrating that PET-CDs can be employed in fluorescence anti-counterfeiting measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
响应面法优化 PET 基碳点的制备技术及其应用
以 PET 废弃物、吡咯烷酮酸(PMA)和氨(NH3-H2O)为前体,采用一步水热法制备聚对苯二甲酸乙二醇酯(PET)基碳点(PET-CD)是一种高价值的 PET 废弃物利用策略,具有巨大的应用潜力。为实现 PET 废弃物的高效回收利用,研究人员采用响应面方法优化 PET-CD 合成过程中的前驱体配比,并以荧光量子产率(QY)作为关键性能指标。最佳制备条件为:1.180 g PET、3.287 g PMA、8.969 mL NH3-H2O、反应温度 260 ℃、反应时间 12 h。制备的 PET-CD 在 360 nm 至 440 nm 范围内具有与激发无关的发射特性,最佳激发波长为 410 nm,最佳发射波长为 485 nm,QY 为 83.34%。从结构上看,PET-CD 呈球形,表面有氨基和羧基,粒径范围为 1.61 至 4.92 nm,平均粒径为 2.88 nm。制备的 PET-CD 可用于阻光膜(LBF)和荧光防伪技术。在紫外线和蓝光波长范围内,通过 LBFs 的光强度明显降低,其性能可与商用防蓝光眼镜媲美。此外,PET-CDs 解决方案还可用于印刷在紫外线激发下可见而在可见光下不可见的图案,这表明 PET-CDs 可用于荧光防伪措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Optimization of Preparation Technology for PET-Based Carbon Dots by Response Surface Method and Its Application. Reliability of Multi-Emissive Carbon Quantum Dots for Multiplexing; Assessing the Figures of Merit. Combustion Synthesis and Influence of Dy3+ ions on Structural and Photometric Attributes of Olivine-type LiMgPO4 Nanophosphors for Illumination Applications. Luminescence Behavior and Structural Characteristics of Novel BaYAl3O7: Tb3+ Nanophosphors. Preparation and Characterization of Red, Green, Blue (RGB) and White Luminescent Inorganic/Organic Polymers Through In Situ Polymerization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1