Sang Won Im, Ryeong Myeong Kim, Jeong Hyun Han, In Han Ha, Hye-Eun Lee, Hyo-Yong Ahn, Eunjeong Jo, Ki Tae Nam
{"title":"Synthesis of chiral gold helicoid nanoparticles using glutathione.","authors":"Sang Won Im, Ryeong Myeong Kim, Jeong Hyun Han, In Han Ha, Hye-Eun Lee, Hyo-Yong Ahn, Eunjeong Jo, Ki Tae Nam","doi":"10.1038/s41596-024-01083-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral plasmonic nanostructures are in high demand because of their unique optical properties, which are applicable to polarization control, chiral sensing and biomedical applications. An easy and scalable synthesis method for these nanostructures may facilitate their development further. We have reported the synthesis for 432-symmetric chiral plasmonic nanoparticles by using a seed-mediated colloidal method facilitated by a chiral amino acid and peptides. Among those, 432 helicoid III nanoparticles particularly exhibited well-defined chiral morphologies and exceptional chiroptic properties, evidenced by a Kuhn's dissymmetry factor (g-factor) of 0.2, making them valuable for various applications. Here, we detail the synthesis stages, including the synthesis of seed nanoparticles, the verification of each stage outcome and the calibration of synthesis conditions. We further illustrate the troubleshooting section and video-document the stages to facilitate the reliable reproduction of 432 helicoid III nanoparticles. The procedure requires 8 h to complete and can be carried out by users with expertise in chemistry or materials science.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01083-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral plasmonic nanostructures are in high demand because of their unique optical properties, which are applicable to polarization control, chiral sensing and biomedical applications. An easy and scalable synthesis method for these nanostructures may facilitate their development further. We have reported the synthesis for 432-symmetric chiral plasmonic nanoparticles by using a seed-mediated colloidal method facilitated by a chiral amino acid and peptides. Among those, 432 helicoid III nanoparticles particularly exhibited well-defined chiral morphologies and exceptional chiroptic properties, evidenced by a Kuhn's dissymmetry factor (g-factor) of 0.2, making them valuable for various applications. Here, we detail the synthesis stages, including the synthesis of seed nanoparticles, the verification of each stage outcome and the calibration of synthesis conditions. We further illustrate the troubleshooting section and video-document the stages to facilitate the reliable reproduction of 432 helicoid III nanoparticles. The procedure requires 8 h to complete and can be carried out by users with expertise in chemistry or materials science.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.