Intrathecal lactate dehydrogenase A inhibitors FX11 and oxamate alleviate chronic constriction injury-induced nociceptive sensitization through neuroinflammation and angiogenesis.
{"title":"Intrathecal lactate dehydrogenase A inhibitors FX11 and oxamate alleviate chronic constriction injury-induced nociceptive sensitization through neuroinflammation and angiogenesis.","authors":"Hao-Jung Cheng, Nan-Fu Chen, Wu-Fu Chen, Zong-Sheng Wu, Yu-Yo Sun, Wei-Nung Teng, Fu-Wei Su, Chun-Sung Sung, Zhi-Hong Wen","doi":"10.1186/s10194-024-01916-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuropathic pain involves neuroinflammation and upregulation of glycolysis in the central nervous system. Unfortunately, few effective treatments are available for managing this type of pain. The overactivation of lactate dehydrogenase A (LDHA), an essential enzyme in glycolysis, can cause neuroinflammation and nociception. This study investigated the spinal role of LDHA in neuropathic pain.</p><p><strong>Method: </strong>Using immunohistochemical analysis, nociceptive behavior, and western blotting, we evaluated the cellular mechanisms of intrathecal administration of LDHA inhibitors, including FX11 and oxamate, in chronic constriction injury (CCI)-induced neuropathic rats.</p><p><strong>Result: </strong>FX11 and oxamate attenuated CCI-induced neuronal LDHA upregulation and nociceptive sensitization. Moreover, CCI-induced neuroinflammation, microglial polarization, and angiogenesis were attenuated by LDHA inhibitors. These inhibitors regulate the TANK binding kinase-1 (TBK1)/hypoxia-inducible factor 1 subunit alpha (HIF-1α) axis, crucial for controlling inflammation and new blood vessel growth. Additionally, CCI-induced nuclear LDHA translocation, as associated with oxidative stress resistance, was attenuated by LDHA inhibitors.</p><p><strong>Conclusion: </strong>In conclusion, LDHA may be a potential therapeutic target for treating neuropathic pain by regulating neuroinflammation and angiogenesis.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"25 1","pages":"207"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-024-01916-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neuropathic pain involves neuroinflammation and upregulation of glycolysis in the central nervous system. Unfortunately, few effective treatments are available for managing this type of pain. The overactivation of lactate dehydrogenase A (LDHA), an essential enzyme in glycolysis, can cause neuroinflammation and nociception. This study investigated the spinal role of LDHA in neuropathic pain.
Method: Using immunohistochemical analysis, nociceptive behavior, and western blotting, we evaluated the cellular mechanisms of intrathecal administration of LDHA inhibitors, including FX11 and oxamate, in chronic constriction injury (CCI)-induced neuropathic rats.
Result: FX11 and oxamate attenuated CCI-induced neuronal LDHA upregulation and nociceptive sensitization. Moreover, CCI-induced neuroinflammation, microglial polarization, and angiogenesis were attenuated by LDHA inhibitors. These inhibitors regulate the TANK binding kinase-1 (TBK1)/hypoxia-inducible factor 1 subunit alpha (HIF-1α) axis, crucial for controlling inflammation and new blood vessel growth. Additionally, CCI-induced nuclear LDHA translocation, as associated with oxidative stress resistance, was attenuated by LDHA inhibitors.
Conclusion: In conclusion, LDHA may be a potential therapeutic target for treating neuropathic pain by regulating neuroinflammation and angiogenesis.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.