Deep mutual learning on hybrid amino acid PET predicts H3K27M mutations in midline gliomas

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-11-25 DOI:10.1038/s41698-024-00760-1
Yifan Yuan, Guanglei Li, Shuhao Mei, Mingtao Hu, Ying-Hua Chu, Yi-Cheng Hsu, Chaolin Li, Jianping Song, Jie Hu, Danyang Feng, Fang Xie, Yihui Guan, Qi Yue, Mianxin Liu, Ying Mao
{"title":"Deep mutual learning on hybrid amino acid PET predicts H3K27M mutations in midline gliomas","authors":"Yifan Yuan, Guanglei Li, Shuhao Mei, Mingtao Hu, Ying-Hua Chu, Yi-Cheng Hsu, Chaolin Li, Jianping Song, Jie Hu, Danyang Feng, Fang Xie, Yihui Guan, Qi Yue, Mianxin Liu, Ying Mao","doi":"10.1038/s41698-024-00760-1","DOIUrl":null,"url":null,"abstract":"Predicting H3K27M mutation status in midline gliomas non-invasively is of considerable interest, particularly using deep learning with 11C-methionine (MET) and 18F-fluoroethyltyrosine (FET) positron emission tomography (PET). To optimise prediction efficiency, we derived an assistance training (AT) scheme to allow mutual benefits between MET and FET learning to boost the predictability but still only require either PET as inputs for predictions. Our method significantly surpassed conventional convolutional neural network (CNN), radiomics-based, and MR-based methods, achieved an area under the curve (AUC) of 0.9343 for MET, and an AUC of 0.8619 for FET during internal cross-validation (n = 90). The performance remained high in hold-out testing (n = 19) and consecutive testing cohorts (n = 21), with AUCs of 0.9205 and 0.7404. The clinical feasibility of the proposed method was confirmed by the agreements to multi-departmental decisions and outcomes in pathology-uncertain cases. The findings positions our method as a promising tool for aiding treatment decisions in midline glioma.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-13"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00760-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting H3K27M mutation status in midline gliomas non-invasively is of considerable interest, particularly using deep learning with 11C-methionine (MET) and 18F-fluoroethyltyrosine (FET) positron emission tomography (PET). To optimise prediction efficiency, we derived an assistance training (AT) scheme to allow mutual benefits between MET and FET learning to boost the predictability but still only require either PET as inputs for predictions. Our method significantly surpassed conventional convolutional neural network (CNN), radiomics-based, and MR-based methods, achieved an area under the curve (AUC) of 0.9343 for MET, and an AUC of 0.8619 for FET during internal cross-validation (n = 90). The performance remained high in hold-out testing (n = 19) and consecutive testing cohorts (n = 21), with AUCs of 0.9205 and 0.7404. The clinical feasibility of the proposed method was confirmed by the agreements to multi-departmental decisions and outcomes in pathology-uncertain cases. The findings positions our method as a promising tool for aiding treatment decisions in midline glioma.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合氨基酸 PET 深度相互学习预测中线胶质瘤中的 H3K27M 突变
无创预测中线胶质瘤的H3K27M突变状态引起了广泛关注,特别是利用11C-蛋氨酸(MET)和18F-氟乙基酪氨酸(FET)正电子发射断层扫描(PET)进行深度学习。为了优化预测效率,我们推导出一种辅助训练(AT)方案,使 MET 和 FET 学习互惠互利,从而提高预测能力,但仍只需要其中一种 PET 作为预测输入。我们的方法大大超过了传统的卷积神经网络(CNN)、基于放射组学和基于 MR 的方法,在内部交叉验证(n = 90)中,MET 的曲线下面积(AUC)达到了 0.9343,FET 的曲线下面积(AUC)达到了 0.8619。在保留测试(n = 19)和连续测试群组(n = 21)中,其性能仍然很高,AUC 分别为 0.9205 和 0.7404。在病理不确定的病例中,多部门决策和结果的一致性证实了所提方法的临床可行性。这些研究结果将我们的方法定位为中线胶质瘤治疗决策的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1