Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis.

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2025-01-17 DOI:10.1038/s41698-024-00794-5
Lei Cui, Shuai Zhao, Hai Long Teng, Biao Yang, Qian Liu, An Qin
{"title":"Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis.","authors":"Lei Cui, Shuai Zhao, Hai Long Teng, Biao Yang, Qian Liu, An Qin","doi":"10.1038/s41698-024-00794-5","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods. A novel machine learning framework combining 10 algorithms was developed to construct an Integrin-related Signature (IRS), which demonstrated robust predictive power across multiple datasets. The IRS's utility in predicting overall survival was confirmed using data from The Cancer Genome Atlas, underscoring its potential in personalized cancer management.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"19"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-024-00794-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods. A novel machine learning framework combining 10 algorithms was developed to construct an Integrin-related Signature (IRS), which demonstrated robust predictive power across multiple datasets. The IRS's utility in predicting overall survival was confirmed using data from The Cancer Genome Atlas, underscoring its potential in personalized cancer management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多组学和多数据集分析,整合素被确定为骨肉瘤的潜在预后标志物。
骨肉瘤占全球原发性恶性骨肿瘤的20%。由于整合素在肿瘤发展和转移中的复杂作用,评估其预后具有挑战性。本研究利用GEO数据库中的209268个骨肉瘤细胞,利用先进的分析方法鉴定整合素相关基因。开发了一种结合10种算法的新型机器学习框架来构建integrin相关签名(IRS),该签名在多个数据集上显示出强大的预测能力。IRS在预测总体生存方面的效用得到了癌症基因组图谱数据的证实,强调了其在个性化癌症管理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1