LiPheStream - A 18-month high spatiotemporal resolution point cloud time series of Boreal trees from Finland.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-25 DOI:10.1038/s41597-024-04143-w
Samantha Wittke, Mariana Campos, Lassi Ruoppa, Rami Echriti, Yunsheng Wang, Antoni Gołoś, Antero Kukko, Juha Hyyppä, Eetu Puttonen
{"title":"LiPheStream - A 18-month high spatiotemporal resolution point cloud time series of Boreal trees from Finland.","authors":"Samantha Wittke, Mariana Campos, Lassi Ruoppa, Rami Echriti, Yunsheng Wang, Antoni Gołoś, Antero Kukko, Juha Hyyppä, Eetu Puttonen","doi":"10.1038/s41597-024-04143-w","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper, we introduce a high-resolution spatiotemporal point cloud time series, acquired using a LiDAR sensor mounted 30 metres above ground on a flux observation tower monitoring a boreal forest. The dataset comprises a 18-month long (April 2020 - September 2021) time series with an average interval of 3.5 days between observations. The data acquisition, transfer, and storage systems established at Hyytiälä (Finland) are named the LiDAR Phenology station (LiPhe). The dataset consists of 103 time points of LiDAR point clouds covering a total of 458 individual trees, comprising three distinct Boreal species. Additional reference information includes the respective location, the species, and the initial height (at the first time point) of each individual tree. The processing scripts are included to outline the workflow used to generate the individual tree point clouds (LiPheKit). The presented dataset offers a comprehensive insight into inter- and intra-species variations of the individual trees regarding their growth strategies, phenological dynamics, and other functioning processes over two growth seasons.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1281"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04143-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we introduce a high-resolution spatiotemporal point cloud time series, acquired using a LiDAR sensor mounted 30 metres above ground on a flux observation tower monitoring a boreal forest. The dataset comprises a 18-month long (April 2020 - September 2021) time series with an average interval of 3.5 days between observations. The data acquisition, transfer, and storage systems established at Hyytiälä (Finland) are named the LiDAR Phenology station (LiPhe). The dataset consists of 103 time points of LiDAR point clouds covering a total of 458 individual trees, comprising three distinct Boreal species. Additional reference information includes the respective location, the species, and the initial height (at the first time point) of each individual tree. The processing scripts are included to outline the workflow used to generate the individual tree point clouds (LiPheKit). The presented dataset offers a comprehensive insight into inter- and intra-species variations of the individual trees regarding their growth strategies, phenological dynamics, and other functioning processes over two growth seasons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在本文中,我们介绍了一个高分辨率时空点云时间序列,该序列是使用安装在监测北方森林的通量观测塔上距地面 30 米处的激光雷达传感器获取的。该数据集包括一个长达 18 个月(2020 年 4 月至 2021 年 9 月)的时间序列,平均观测间隔为 3.5 天。在 Hyytiälä(芬兰)建立的数据采集、传输和存储系统被命名为激光雷达气候学站(LiPhe)。数据集由 103 个时间点的激光雷达点云组成,共涵盖 458 棵树,包括三个不同的北方树种。其他参考信息包括每棵树的位置、树种和初始高度(在第一个时间点)。数据集包含处理脚本,概述了用于生成单个树木点云(LiPheKit)的工作流程。所提供的数据集能让人全面了解单棵树木在两个生长季节的生长策略、物候动态和其他功能过程方面的种间和种内变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
LiPheStream - A 18-month high spatiotemporal resolution point cloud time series of Boreal trees from Finland. MedSegBench: A comprehensive benchmark for medical image segmentation in diverse data modalities. A multilevel dataset of landform mapping and geomorphologic descriptors for the Loess Plateau of China. Haplotype-phased genome assemblies and annotation of the northern white-cheeked gibbon (Nomascus leucogenys). Multi-proteomics and interactome dataset of tick-borne encephalitis virus infected host cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1