{"title":"Decreased prefrontal glutamatergic function is associated with a reduced astrocyte-related gene expression in treatment-resistant depression.","authors":"Masataka Wada, Shinichiro Nakajima, Shiori Honda, Mayuko Takano, Keita Taniguchi, Saki Homma, Risako Ueda, Yui Tobari, Yu Mimura, Shinya Fujii, Masaru Mimura, Yoshihiro Noda","doi":"10.1038/s41398-024-03186-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamatergic dysfunction is involved in the pathophysiology of treatment-resistant depression (TRD). However, few physiological studies have evaluated its pathophysiology in vivo in individuals with TRD. Transcranial magnetic stimulation-electroencephalography (TMS-EEG) techniques can assess intracortical facilitation (ICF), which reflects glutamatergic neurophysiological function in specific cortical regions. The objectives of this study were (1) to compare glutamatergic receptor-mediated function as indexed with ICF TMS-EEG in the dorsolateral prefrontal cortex (DLPFC) between participants with TRD and healthy controls (HCs) and (2) to explore the relationships between cell-specific gene expression levels and the group difference in glutamatergic neural propagation using virtual histology approach. Sixty participants with TRD and thirty HCs were examined with ICF TMS-EEG measure (80 single-pulse TMS and paired-pulse ICF) in the left DLPFC. Both sensor and source-level ICF measures were computed to compare them between the TRD and HC groups. Furthermore, we conducted spatial correlation analyses interregionally between ICF glutamatergic activity and cell-specific gene expression levels employing the Allen Human Brain Atlas dataset. DLPFC-ICF at the sensor level was not significantly different between the two groups, whereas DLPFC-ICF at the source level was reduced in the TRD group compared with the HC group (p = 0.026). Moreover, the reduced ICF signal propagation of TRD correlated with astrocyte-specific gene expression level (p < 0.0001). The glutamatergic neural activities indexed by ICF in the left DLPFC were decreased in participants with TRD. Additionally, a relative reduction in glutamatergic signal propagation originating from the DLPFC in TRD may be associated with astrocytic abnormality.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"478"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03186-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamatergic dysfunction is involved in the pathophysiology of treatment-resistant depression (TRD). However, few physiological studies have evaluated its pathophysiology in vivo in individuals with TRD. Transcranial magnetic stimulation-electroencephalography (TMS-EEG) techniques can assess intracortical facilitation (ICF), which reflects glutamatergic neurophysiological function in specific cortical regions. The objectives of this study were (1) to compare glutamatergic receptor-mediated function as indexed with ICF TMS-EEG in the dorsolateral prefrontal cortex (DLPFC) between participants with TRD and healthy controls (HCs) and (2) to explore the relationships between cell-specific gene expression levels and the group difference in glutamatergic neural propagation using virtual histology approach. Sixty participants with TRD and thirty HCs were examined with ICF TMS-EEG measure (80 single-pulse TMS and paired-pulse ICF) in the left DLPFC. Both sensor and source-level ICF measures were computed to compare them between the TRD and HC groups. Furthermore, we conducted spatial correlation analyses interregionally between ICF glutamatergic activity and cell-specific gene expression levels employing the Allen Human Brain Atlas dataset. DLPFC-ICF at the sensor level was not significantly different between the two groups, whereas DLPFC-ICF at the source level was reduced in the TRD group compared with the HC group (p = 0.026). Moreover, the reduced ICF signal propagation of TRD correlated with astrocyte-specific gene expression level (p < 0.0001). The glutamatergic neural activities indexed by ICF in the left DLPFC were decreased in participants with TRD. Additionally, a relative reduction in glutamatergic signal propagation originating from the DLPFC in TRD may be associated with astrocytic abnormality.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.