ViViEchoformer: Deep Video Regressor Predicting Ejection Fraction.

Taymaz Akan, Sait Alp, Md Shenuarin Bhuiyan, Tarek Helmy, A Wayne Orr, Md Mostafizur Rahman Bhuiyan, Steven A Conrad, John A Vanchiere, Christopher G Kevil, Mohammad Alfrad Nobel Bhuiyan
{"title":"ViViEchoformer: Deep Video Regressor Predicting Ejection Fraction.","authors":"Taymaz Akan, Sait Alp, Md Shenuarin Bhuiyan, Tarek Helmy, A Wayne Orr, Md Mostafizur Rahman Bhuiyan, Steven A Conrad, John A Vanchiere, Christopher G Kevil, Mohammad Alfrad Nobel Bhuiyan","doi":"10.1007/s10278-024-01336-y","DOIUrl":null,"url":null,"abstract":"<p><p>Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01336-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an R 2 of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ViViEchoformer:预测射血分数的深度视频调节器
心脏病是导致全球死亡的主要原因,而以射血分数(EF)衡量的心脏功能是影响预后的重要决定因素,因此精确测量是 PT 评估的关键参数。超声心动图通常用于测量射血分数,但人工解读存在观察者(或读者)内部和观察者之间的差异。深度学习(DL)推动了机器学习的复苏,从而促进了医疗应用的发展。我们介绍了 ViViEchoformer DL 方法,它使用视频视觉转换器直接回归超声心动图视频中的左心室功能(LVEF)。研究使用了斯坦福大学医院患者的 10030 个心尖四腔超声心动图视频数据集。该模型通过从视频输入中提取时空标记,准确捕捉空间信息并保留帧间关系,从而实现准确、全自动的 EF 预测,为人工评估和分析提供帮助。ViViEchoformer 预测射血分数的平均绝对误差为 6.14%,平均平方根误差为 8.4%,平均平方对数误差为 0.04,R 2 为 0.55。ViViEchoformer 预测射血分数降低型心力衰竭(HFrEF)的曲线下面积为 0.83,以射血分数低于 50% 为标准阈值,分类准确率为 87。我们基于视频的方法能精确量化左心室功能,为人工评估提供了可靠的替代方案,并为超声心动图解读奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Periapical Index Score Classification System in Periapical Radiographs Using Deep Learning. Classification of Interventional Radiology Reports into Technique Categories with a Fine-Tuned Large Language Model. Diagnosing Respiratory Variability: Convolutional Neural Networks for Chest X-ray Classification Across Diverse Pulmonary Conditions. Semi-supervised Ensemble Learning for Automatic Interpretation of Lung Ultrasound Videos. Single-View Fluoroscopic X-Ray Pose Estimation: A Comparison of Alternative Loss Functions and Volumetric Scene Representations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1