Semi-supervised Ensemble Learning for Automatic Interpretation of Lung Ultrasound Videos.

Bárbara Malainho, João Freitas, Catarina Rodrigues, Ana Claudia Tonelli, André Santanchè, Marco A Carvalho-Filho, Jaime C Fonseca, Sandro Queirós
{"title":"Semi-supervised Ensemble Learning for Automatic Interpretation of Lung Ultrasound Videos.","authors":"Bárbara Malainho, João Freitas, Catarina Rodrigues, Ana Claudia Tonelli, André Santanchè, Marco A Carvalho-Filho, Jaime C Fonseca, Sandro Queirós","doi":"10.1007/s10278-024-01344-y","DOIUrl":null,"url":null,"abstract":"<p><p>Point-of-care ultrasound (POCUS) stands as a safe, portable, and cost-effective imaging modality for swift bedside patient examinations. Specifically, lung ultrasonography (LUS) has proven useful in evaluating both acute and chronic pulmonary conditions. Despite its clinical value, automatic LUS interpretation remains relatively unexplored, particularly in multi-label contexts. This work proposes a novel deep learning (DL) framework tailored for interpreting lung POCUS videos, whose outputs are the finding(s) present in these videos (such as A-lines, B-lines, or consolidations). The pipeline, based on a residual (2+1)D architecture, initiates with a pre-processing routine for video masking and standardisation, and employs a semi-supervised approach to harness available unlabeled data. Additionally, we introduce an ensemble modeling strategy that aggregates outputs from models trained to predict distinct label sets, thereby leveraging the hierarchical nature of LUS findings. The proposed framework and its building blocks were evaluated through extensive experiments with both multi-class and multi-label models, highlighting its versatility. In a held-out test set, the categorical proposal, suited for expedite triage, achieved an average F1-score of 92.4%, while the multi-label proposal, helpful for patient management and referral, achieved an average F1-score of 70.5% across five relevant LUS findings. Overall, the semi-supervised methodology contributed significantly to improved performance, while the proposed hierarchy-aware ensemble provided moderate additional gains.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01344-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Point-of-care ultrasound (POCUS) stands as a safe, portable, and cost-effective imaging modality for swift bedside patient examinations. Specifically, lung ultrasonography (LUS) has proven useful in evaluating both acute and chronic pulmonary conditions. Despite its clinical value, automatic LUS interpretation remains relatively unexplored, particularly in multi-label contexts. This work proposes a novel deep learning (DL) framework tailored for interpreting lung POCUS videos, whose outputs are the finding(s) present in these videos (such as A-lines, B-lines, or consolidations). The pipeline, based on a residual (2+1)D architecture, initiates with a pre-processing routine for video masking and standardisation, and employs a semi-supervised approach to harness available unlabeled data. Additionally, we introduce an ensemble modeling strategy that aggregates outputs from models trained to predict distinct label sets, thereby leveraging the hierarchical nature of LUS findings. The proposed framework and its building blocks were evaluated through extensive experiments with both multi-class and multi-label models, highlighting its versatility. In a held-out test set, the categorical proposal, suited for expedite triage, achieved an average F1-score of 92.4%, while the multi-label proposal, helpful for patient management and referral, achieved an average F1-score of 70.5% across five relevant LUS findings. Overall, the semi-supervised methodology contributed significantly to improved performance, while the proposed hierarchy-aware ensemble provided moderate additional gains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Periapical Index Score Classification System in Periapical Radiographs Using Deep Learning. Classification of Interventional Radiology Reports into Technique Categories with a Fine-Tuned Large Language Model. Diagnosing Respiratory Variability: Convolutional Neural Networks for Chest X-ray Classification Across Diverse Pulmonary Conditions. Semi-supervised Ensemble Learning for Automatic Interpretation of Lung Ultrasound Videos. Single-View Fluoroscopic X-Ray Pose Estimation: A Comparison of Alternative Loss Functions and Volumetric Scene Representations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1