Fengyue He, Lianjun Wen, Xiyu Hou, Lin-Han Li, Lei Liu, Ran Zhuo, Ping-Heng Tan, Dong Pan, Jianhua Zhao
{"title":"Catalyst-free in-plane growth of high-quality ultra-thin InSb nanowires","authors":"Fengyue He, Lianjun Wen, Xiyu Hou, Lin-Han Li, Lei Liu, Ran Zhuo, Ping-Heng Tan, Dong Pan, Jianhua Zhao","doi":"10.1063/5.0223513","DOIUrl":null,"url":null,"abstract":"InSb nanowires (NWs) show an important application in topological quantum computing owing to their high electron mobility, strong spin–orbit interaction, and large g factor. Particularly, ultra-thin InSb NWs are expected to be used to solve the problem of multiple sub-band occupation for the detection of Majorana fermions. However, it is still difficult to epitaxially grow ultra-thin InSb NWs due to the surfactant effect of Sb. Here, we develop an in-plane self-assembled technique to grow catalyst-free ultra-thin InSb NWs on Ge(001) substrates by molecular-beam epitaxy. It is found that ultra-thin InSb NWs with a diameter as small as 17 nm can be obtained by this growth manner. More importantly, these NWs have aspect ratios of 40–100. We also find that the in-plane InSb NWs always grow along the [110] and [11¯0] directions, and they have the same {111} facets, which are caused by the lowest-surface energy of {111} crystal planes for NWs grown with a high Sb/In ratio. Detailed structural studies confirm that InSb NWs are high-quality zinc blende crystals, and there is a strict epitaxial relationship between the InSb NW and the Ge substrate. The in-plane InSb NWs have a similar Raman spectral linewidth compared with that of the single-crystal InSb substrate, further confirming their high crystal quality. Our work provides useful insights into the controlled growth of in-plane catalyst-free III–V NWs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"8 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223513","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
InSb nanowires (NWs) show an important application in topological quantum computing owing to their high electron mobility, strong spin–orbit interaction, and large g factor. Particularly, ultra-thin InSb NWs are expected to be used to solve the problem of multiple sub-band occupation for the detection of Majorana fermions. However, it is still difficult to epitaxially grow ultra-thin InSb NWs due to the surfactant effect of Sb. Here, we develop an in-plane self-assembled technique to grow catalyst-free ultra-thin InSb NWs on Ge(001) substrates by molecular-beam epitaxy. It is found that ultra-thin InSb NWs with a diameter as small as 17 nm can be obtained by this growth manner. More importantly, these NWs have aspect ratios of 40–100. We also find that the in-plane InSb NWs always grow along the [110] and [11¯0] directions, and they have the same {111} facets, which are caused by the lowest-surface energy of {111} crystal planes for NWs grown with a high Sb/In ratio. Detailed structural studies confirm that InSb NWs are high-quality zinc blende crystals, and there is a strict epitaxial relationship between the InSb NW and the Ge substrate. The in-plane InSb NWs have a similar Raman spectral linewidth compared with that of the single-crystal InSb substrate, further confirming their high crystal quality. Our work provides useful insights into the controlled growth of in-plane catalyst-free III–V NWs.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.