{"title":"PIN1a- mediated auxin release from rootstock cotyledon contributes to healing in watermelon as revealed by seeds soaking-VIGS and cotyledon grafting","authors":"Xiao Wang, Mu Xiong, Jianuo Xu, Ting Zhang, Akebaierjiang Kadeer, Zhilong Bie, Michitaka Notaguchi, Yuan Huang","doi":"10.1093/hr/uhae329","DOIUrl":null,"url":null,"abstract":"Grafting is a propagation method extensively utilized in cucurbits. However, the mechanisms underlying graft healing remain poorly understood. This study employed self-grafted watermelon plants to investigate how rootstock cotyledon affects healing. The complete removal of rootstock cotyledons significantly hindered scion growth, as evidenced by reductions in scion fresh weight and the area of true leaves. Physiological assessments revealed reduced callus formation, weaker adhesion forces, a more pronounced necrotic layer, and decreased rates of xylem and phloem reconnection at the graft junction when rootstock cotyledons were completely removed. Additionally, auxin levels at the rootstock graft junction notably decreased following cotyledon removal. In contrast, the exogenous application of indole-3-acetic acid (IAA) notably enhanced graft healing. Moreover, gene expression analysis of the PIN auxin efflux carriers in the rootstock cotyledons indicated significant activation of ClPIN1a post-grafting. Furthermore, we developed an improved Virus Induced Gene Silencing (VIGS) system for cucurbits using seeds soaking method. This method achieved an infection success rate of 83% with 60%-75% gene silencing efficiency, compared to the 37% success rate with 40%-60% efficiency seen with traditional cotyledon infection. Combining our novel VIGS approach with cotyledon grafting techniques, we demonstrated that rootstock cotyledons regulate callus formation through ClPIN1a-mediated endogenous auxin release, thus facilitating graft union development. These findings suggest potential strategies for enhancing watermelon graft healing by manipulating rootstock cotyledons.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"24 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae329","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Grafting is a propagation method extensively utilized in cucurbits. However, the mechanisms underlying graft healing remain poorly understood. This study employed self-grafted watermelon plants to investigate how rootstock cotyledon affects healing. The complete removal of rootstock cotyledons significantly hindered scion growth, as evidenced by reductions in scion fresh weight and the area of true leaves. Physiological assessments revealed reduced callus formation, weaker adhesion forces, a more pronounced necrotic layer, and decreased rates of xylem and phloem reconnection at the graft junction when rootstock cotyledons were completely removed. Additionally, auxin levels at the rootstock graft junction notably decreased following cotyledon removal. In contrast, the exogenous application of indole-3-acetic acid (IAA) notably enhanced graft healing. Moreover, gene expression analysis of the PIN auxin efflux carriers in the rootstock cotyledons indicated significant activation of ClPIN1a post-grafting. Furthermore, we developed an improved Virus Induced Gene Silencing (VIGS) system for cucurbits using seeds soaking method. This method achieved an infection success rate of 83% with 60%-75% gene silencing efficiency, compared to the 37% success rate with 40%-60% efficiency seen with traditional cotyledon infection. Combining our novel VIGS approach with cotyledon grafting techniques, we demonstrated that rootstock cotyledons regulate callus formation through ClPIN1a-mediated endogenous auxin release, thus facilitating graft union development. These findings suggest potential strategies for enhancing watermelon graft healing by manipulating rootstock cotyledons.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.