{"title":"Low-temperature transport and relaxation of photo-carriers in TiS2","authors":"Ruan Zhang, Shuangxing Zhu, Chaofan Wang, Jiaxin Wu, Junning Mei, Ying Liu, Yu Chen, Qiyi Wu, Chen Zhang, Mingyuan Huang, Jianqiao Meng, Xinghan Cai","doi":"10.1063/5.0235742","DOIUrl":null,"url":null,"abstract":"The investigation of non-equilibrium carrier dynamics in two-dimensional semi-metallic materials, particularly at low temperatures, is crucial for elucidating their fundamental properties, including carrier–carrier interactions and electron–phonon scattering mechanisms. In this study, we examine the behavior of 1T-TiS2, utilizing scanning photocurrent microscopy, bias voltage-adjustable photoresponse measurements, and pump-probe techniques to explore the temperature-dependent transport and relaxation of photo-excited charge carriers. We observe a non-monotonic intrinsic photocurrent in the biased device, with a pronounced peak feature occurring at approximately 25 K, which is corroborated by pump-probe measurements that reveal a similar peak in the magnitude and relaxation time of the differential reflectance as a function of the temperature. Our results highlight the unique carrier dynamics in TiS2, offering valuable insights for the design of TiS2-based optoelectronic devices that can operate effectively across a wide temperature range.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235742","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of non-equilibrium carrier dynamics in two-dimensional semi-metallic materials, particularly at low temperatures, is crucial for elucidating their fundamental properties, including carrier–carrier interactions and electron–phonon scattering mechanisms. In this study, we examine the behavior of 1T-TiS2, utilizing scanning photocurrent microscopy, bias voltage-adjustable photoresponse measurements, and pump-probe techniques to explore the temperature-dependent transport and relaxation of photo-excited charge carriers. We observe a non-monotonic intrinsic photocurrent in the biased device, with a pronounced peak feature occurring at approximately 25 K, which is corroborated by pump-probe measurements that reveal a similar peak in the magnitude and relaxation time of the differential reflectance as a function of the temperature. Our results highlight the unique carrier dynamics in TiS2, offering valuable insights for the design of TiS2-based optoelectronic devices that can operate effectively across a wide temperature range.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.