Bingbing Duan, Urs Hugentobler, Oliver Montenbruck, Peter Steigenberger, Arturo Villiger
{"title":"Flatness constraints in the estimation of GNSS satellite antenna phase center offsets and variations","authors":"Bingbing Duan, Urs Hugentobler, Oliver Montenbruck, Peter Steigenberger, Arturo Villiger","doi":"10.1007/s00190-024-01919-1","DOIUrl":null,"url":null,"abstract":"<p>Accurate information on satellite antenna phase center offsets (PCOs) and phase variations (PVs) is indispensable for high-precision geodetic applications. In the absence of consistent pre-flight calibrations, satellite antenna PCOs and PVs of global navigation satellite systems are commonly estimated based on observations from a global network, constraining the scale to a given reference frame. As part of this estimation, flatness and zero-mean conditions need to be applied to unambiguously separate PCOs, PVs, and constant phase ambiguities. Within this study, we analytically investigate the impact of different boresight-angle-dependent weighting functions for PV minimization, and we compare antenna models generated with different observation-based weighting schemes with those based on uniform weighting. For the case of the GPS IIR/-M and III satellites, systematic differences of 10 mm in the PVs and 65 cm in the corresponding PCOs are identified. In addition, new antenna models for the different blocks of BeiDou-3 satellites in medium Earth orbit are derived using different processing schemes. As a drawback of traditional approaches estimating PCOs and PVs consecutively in distinct steps, it is shown that different, albeit self-consistent, PCO/PV pairs may result depending on whether PCOs or PVs are estimated first. This apparent discrepancy can be attributed to potentially inconsistent weighting functions in the individual processing steps. Use of a single-step process is therefore proposed, in which a dedicated constraint for PCO-PV separation is applied in the solution of the normal equations. Finally, the impact of neglecting phase patterns in precise point positioning applications is investigated. In addition to an overall increase of the position scatter, the occurrence of systematic height biases is illustrated. While observation-based weighting in the pattern estimation can help to avoid such biases, the possible benefit depends critically on the specific elevation-dependent weighting applied in the user’s positioning model. As such, the practical advantage of such antenna models would remain limited, and uniform weighting is recommended as a lean and transparent approach for the pattern estimation of satellite antenna models from observations.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"16 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01919-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate information on satellite antenna phase center offsets (PCOs) and phase variations (PVs) is indispensable for high-precision geodetic applications. In the absence of consistent pre-flight calibrations, satellite antenna PCOs and PVs of global navigation satellite systems are commonly estimated based on observations from a global network, constraining the scale to a given reference frame. As part of this estimation, flatness and zero-mean conditions need to be applied to unambiguously separate PCOs, PVs, and constant phase ambiguities. Within this study, we analytically investigate the impact of different boresight-angle-dependent weighting functions for PV minimization, and we compare antenna models generated with different observation-based weighting schemes with those based on uniform weighting. For the case of the GPS IIR/-M and III satellites, systematic differences of 10 mm in the PVs and 65 cm in the corresponding PCOs are identified. In addition, new antenna models for the different blocks of BeiDou-3 satellites in medium Earth orbit are derived using different processing schemes. As a drawback of traditional approaches estimating PCOs and PVs consecutively in distinct steps, it is shown that different, albeit self-consistent, PCO/PV pairs may result depending on whether PCOs or PVs are estimated first. This apparent discrepancy can be attributed to potentially inconsistent weighting functions in the individual processing steps. Use of a single-step process is therefore proposed, in which a dedicated constraint for PCO-PV separation is applied in the solution of the normal equations. Finally, the impact of neglecting phase patterns in precise point positioning applications is investigated. In addition to an overall increase of the position scatter, the occurrence of systematic height biases is illustrated. While observation-based weighting in the pattern estimation can help to avoid such biases, the possible benefit depends critically on the specific elevation-dependent weighting applied in the user’s positioning model. As such, the practical advantage of such antenna models would remain limited, and uniform weighting is recommended as a lean and transparent approach for the pattern estimation of satellite antenna models from observations.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics