The role of tillage practices in wheat straw decomposition and shaping the associated microbial communities in Endocalcaric– Epigleyic Cambisol soil

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-11-27 DOI:10.1007/s00374-024-01879-w
Arman Shamshitov, Gražina Kadžienė, Francesco Pini, Skaidrė Supronienė
{"title":"The role of tillage practices in wheat straw decomposition and shaping the associated microbial communities in Endocalcaric– Epigleyic Cambisol soil","authors":"Arman Shamshitov, Gražina Kadžienė, Francesco Pini, Skaidrė Supronienė","doi":"10.1007/s00374-024-01879-w","DOIUrl":null,"url":null,"abstract":"<p>The recalcitrant nature of wheat (<i>Triticum aestivum</i> L.) straw, one of the most abundant agricultural residues, presents challenges for efficient decomposition, limiting nutrient release and organic matter retention in soils. Understanding the effects of tillage practices on wheat straw decomposition and shaping associated microbial communities is essential for enhancing microbial-mediated breakdown and optimizing residue management to enhance soil health, nutrient cycling, and sustainability in agricultural systems. In this study, the effect of different tillage practices on wheat straw decomposition and associated bacterial and fungal community compositions during non-growing and growing seasons were studied. To simulate tillage, litter bags filled with wheat straw were placed at respective soil depths for conventional (22–24 cm) and reduced (8–10 cm) tillage, and on the surface for the no-tillage treatment. The subsets of the litter bags were randomly retrieved after 145 days and at the end of the experiment after 290 days. Statistical analysis revealed that tillage treatments significantly influenced the decomposition rate and nutrient release over time. Overall, the alpha diversity of the decomposition-associated microbial community was not substantially affected by different tillage treatments, while beta diversity exhibited distinct microbial community compositions in relation to tillage practices. The results of this study contribute to a deeper understanding of wheat straw decomposition-associated bacterial and fungal communities’ response to different tillage treatments, with observations made at two distinct sampling times (non-growing and growing seasons) under certain edaphic and climatic conditions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"63 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01879-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The recalcitrant nature of wheat (Triticum aestivum L.) straw, one of the most abundant agricultural residues, presents challenges for efficient decomposition, limiting nutrient release and organic matter retention in soils. Understanding the effects of tillage practices on wheat straw decomposition and shaping associated microbial communities is essential for enhancing microbial-mediated breakdown and optimizing residue management to enhance soil health, nutrient cycling, and sustainability in agricultural systems. In this study, the effect of different tillage practices on wheat straw decomposition and associated bacterial and fungal community compositions during non-growing and growing seasons were studied. To simulate tillage, litter bags filled with wheat straw were placed at respective soil depths for conventional (22–24 cm) and reduced (8–10 cm) tillage, and on the surface for the no-tillage treatment. The subsets of the litter bags were randomly retrieved after 145 days and at the end of the experiment after 290 days. Statistical analysis revealed that tillage treatments significantly influenced the decomposition rate and nutrient release over time. Overall, the alpha diversity of the decomposition-associated microbial community was not substantially affected by different tillage treatments, while beta diversity exhibited distinct microbial community compositions in relation to tillage practices. The results of this study contribute to a deeper understanding of wheat straw decomposition-associated bacterial and fungal communities’ response to different tillage treatments, with observations made at two distinct sampling times (non-growing and growing seasons) under certain edaphic and climatic conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耕作方式在小麦秸秆分解过程中的作用以及对内钙质-外钙质寒武土壤中相关微生物群落的影响
小麦(Triticum aestivum L.)秸秆是最丰富的农业残留物之一,其顽固性给高效分解带来了挑战,限制了土壤中养分的释放和有机质的保留。了解耕作方法对小麦秸秆分解和相关微生物群落形成的影响,对于加强微生物介导的分解和优化残留物管理以提高土壤健康、养分循环和农业系统的可持续性至关重要。在这项研究中,研究了在非生长季和生长季不同耕作方法对小麦秸秆分解及相关细菌和真菌群落组成的影响。为了模拟耕作,在常规耕作(22-24 厘米)和减量耕作(8-10 厘米)时,将装满小麦秸秆的垃圾袋分别放置在土壤深度,而在免耕处理时,则放置在土壤表面。145 天后和 290 天后试验结束时,随机取回垃圾袋的子集。统计分析显示,耕作处理对分解率和养分释放有显著影响。总体而言,与分解相关的微生物群落的阿尔法多样性并未受到不同耕作处理的实质性影响,而贝塔多样性则显示了与耕作方法相关的不同微生物群落组成。本研究的结果有助于深入了解小麦秸秆分解相关细菌和真菌群落对不同耕作处理的反应,这些观察是在特定的土壤和气候条件下,在两个不同的取样时间(非生长季和生长季)进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Vertical migration of bacteria bearing antibiotic resistance genes and heavy metal resistance genes through a soil profile as affected by manure Rhizosphere bacteriome assemblage following initial fluctuations is delayed with nitrogen additions in tomato seedlings The role of tillage practices in wheat straw decomposition and shaping the associated microbial communities in Endocalcaric– Epigleyic Cambisol soil Soil legacies left by a 20-year eucalypt plantation and a secondary vegetation covers on young eucalypt plants and plant-soil feedback Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1