Sung Won Jung, Matthew D. Watson, Saumya Mukherjee, Daniil V. Evtushinsky, Cephise Cacho, Edoardo Martino, Helmuth Berger, Timur K. Kim
{"title":"Holstein Polarons, Rashba-Like Spin Splitting, and Ising Superconductivity in Electron-Doped MoSe2","authors":"Sung Won Jung, Matthew D. Watson, Saumya Mukherjee, Daniil V. Evtushinsky, Cephise Cacho, Edoardo Martino, Helmuth Berger, Timur K. Kim","doi":"10.1021/acsnano.4c07805","DOIUrl":null,"url":null,"abstract":"Interaction between electrons and phonons in solids is a key effect defining the physical properties of materials, such as electrical and thermal conductivity. In transition metal dichalcogenides (TMDCs), the electron–phonon coupling results in the formation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali-dosed MoSe<sub>2</sub> surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field. In addition, we observed a crossover from phonon-like to plasmon-like polaronic spectral features at the MoSe<sub>2</sub> surface with increasing doping. Our findings support the concept of electron–phonon coupling-mediated superconductivity in electron-doped layered TMDC materials, as observed using ionic liquid gating technology. Furthermore, the discovered spin-splitting at the Fermi level could offer crucial experimental validation for theoretical models of Ising-type superconductivity in these materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"25 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c07805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interaction between electrons and phonons in solids is a key effect defining the physical properties of materials, such as electrical and thermal conductivity. In transition metal dichalcogenides (TMDCs), the electron–phonon coupling results in the formation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali-dosed MoSe2 surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field. In addition, we observed a crossover from phonon-like to plasmon-like polaronic spectral features at the MoSe2 surface with increasing doping. Our findings support the concept of electron–phonon coupling-mediated superconductivity in electron-doped layered TMDC materials, as observed using ionic liquid gating technology. Furthermore, the discovered spin-splitting at the Fermi level could offer crucial experimental validation for theoretical models of Ising-type superconductivity in these materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.