Systematic, computational discovery of multicomponent and one-pot reactions

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-27 DOI:10.1038/s41467-024-54611-5
Rafał Roszak, Louis Gadina, Agnieszka Wołos, Ahmad Makkawi, Barbara Mikulak-Klucznik, Yasemin Bilgi, Karol Molga, Patrycja Gołębiowska, Oskar Popik, Tomasz Klucznik, Sara Szymkuć, Martyna Moskal, Sebastian Baś, Rafał Frydrych, Jacek Mlynarski, Olena Vakuliuk, Daniel T. Gryko, Bartosz A. Grzybowski
{"title":"Systematic, computational discovery of multicomponent and one-pot reactions","authors":"Rafał Roszak, Louis Gadina, Agnieszka Wołos, Ahmad Makkawi, Barbara Mikulak-Klucznik, Yasemin Bilgi, Karol Molga, Patrycja Gołębiowska, Oskar Popik, Tomasz Klucznik, Sara Szymkuć, Martyna Moskal, Sebastian Baś, Rafał Frydrych, Jacek Mlynarski, Olena Vakuliuk, Daniel T. Gryko, Bartosz A. Grzybowski","doi":"10.1038/s41467-024-54611-5","DOIUrl":null,"url":null,"abstract":"<p>Discovery of new types of reactions is essential to organic chemistry because it expands the scope of accessible molecular scaffolds and can enable more economical syntheses of existing structures. In this context, the so-called multicomponent reactions, MCRs, are of particular interest because they can build complex scaffolds from multiple starting materials in just one step, without purification of intermediates. However, for over a century of active research, MCRs have been discovered rather than designed, and their number remains limited to only several hundred. This work demonstrates that computers taught the essential knowledge of reaction mechanisms and rules of physical-organic chemistry can design – completely autonomously and in large numbers – mechanistically distinct MCRs. Moreover, when supplemented by models to approximate kinetic rates, the algorithm can predict reaction yields and identify reactions that have potential for organocatalysis. These predictions are validated by experiments spanning different modes of reactivity and diverse product scaffolds.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54611-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery of new types of reactions is essential to organic chemistry because it expands the scope of accessible molecular scaffolds and can enable more economical syntheses of existing structures. In this context, the so-called multicomponent reactions, MCRs, are of particular interest because they can build complex scaffolds from multiple starting materials in just one step, without purification of intermediates. However, for over a century of active research, MCRs have been discovered rather than designed, and their number remains limited to only several hundred. This work demonstrates that computers taught the essential knowledge of reaction mechanisms and rules of physical-organic chemistry can design – completely autonomously and in large numbers – mechanistically distinct MCRs. Moreover, when supplemented by models to approximate kinetic rates, the algorithm can predict reaction yields and identify reactions that have potential for organocatalysis. These predictions are validated by experiments spanning different modes of reactivity and diverse product scaffolds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组分和一锅反应的系统计算发现
新型反应的发现对有机化学至关重要,因为它扩大了可利用分子支架的范围,并能以更经济的方式合成现有结构。在这方面,所谓的多组分反应(MCR)尤其令人感兴趣,因为它们只需一步就能从多种起始材料构建复杂的支架,而且无需纯化中间产物。然而,在一个多世纪的积极研究中,MCR 一直是被发现而不是被设计出来的,其数量仍然仅限于几百种。这项工作证明,掌握了反应机理和物理有机化学规则基本知识的计算机可以完全自主地设计出大量机理独特的 MCR。此外,如果辅以近似动力学速率模型,该算法还能预测反应产率,并识别出具有有机催化潜力的反应。这些预测通过跨越不同反应模式和不同产物支架的实验得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Negative global-scale association between genetic diversity and speciation rates in mammals Crystal symmetry modification enables high-ranged in-plane thermoelectric performance in n-type SnSe crystals Structural basis of urea transport by Arabidopsis thaliana DUR3 Organelle-like structural evolution of coacervate droplets induced by photopolymerization Activity-based sensing reveals elevated labile copper promotes liver aging via hepatic ALDH1A1 depletion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1