Shape-Control in Microwave-Assisted Synthesis: A Fast Route to Size-Tunable Iron Oxide Nanocubes with Benchmark Magnetic Heat Losses

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-27 DOI:10.1002/adfm.202413514
Wid Mekseriwattana, Niccolò Silvestri, Rosaria Brescia, Ecem Tiryaki, Jugal Barman, Farshad Gorji Mohammadzadeh, Nabila Jarmouni, Teresa Pellegrino
{"title":"Shape-Control in Microwave-Assisted Synthesis: A Fast Route to Size-Tunable Iron Oxide Nanocubes with Benchmark Magnetic Heat Losses","authors":"Wid Mekseriwattana, Niccolò Silvestri, Rosaria Brescia, Ecem Tiryaki, Jugal Barman, Farshad Gorji Mohammadzadeh, Nabila Jarmouni, Teresa Pellegrino","doi":"10.1002/adfm.202413514","DOIUrl":null,"url":null,"abstract":"Iron oxide nanocubes (IONCs) are among the most promising materials in magnetic hyperthermia (MHT) for tumor therapy as they can efficiently convert magnetic energy into heat under alternating magnetic field (AMF). Conventional IONCs syntheses are based on thermal decomposition methods, limited by the long reaction time (hours) and milligram-scale production; while, solvothermal methods produce gram-scale amount of high quality IONCs, but, reaction times are of the orders of hours. In this work, a microwave-assisted route to shape-control IONCs in which the reaction time is reduced to minutes while achieving a high iron conversion yield up to 80% is reported. The size of the IONCs (range 13–30 nm) is coarse-tuned by adjusting the amount of benzaldehyde ligand, while fine-size tuning is achieved by changing temperature and minute-reaction time. IONCs exhibit superparamagnetic behavior at 298 K with saturation magnetization over 80 emu g<sub>IONC</sub><sup>−1</sup> and possess high specific absorption rate values (SAR) up to 400 W g<sub>Fe</sub><sup>−1</sup> at clinical AMF conditions. These results mark a milestone for rapid synthesis of IONCs at high yield conversion of well-defined size and shape nanocubes with benchmark MHT heat performance while using a fast route, with limited energy consumption which makes this method greener and cheaper than previous ones.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"258 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413514","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron oxide nanocubes (IONCs) are among the most promising materials in magnetic hyperthermia (MHT) for tumor therapy as they can efficiently convert magnetic energy into heat under alternating magnetic field (AMF). Conventional IONCs syntheses are based on thermal decomposition methods, limited by the long reaction time (hours) and milligram-scale production; while, solvothermal methods produce gram-scale amount of high quality IONCs, but, reaction times are of the orders of hours. In this work, a microwave-assisted route to shape-control IONCs in which the reaction time is reduced to minutes while achieving a high iron conversion yield up to 80% is reported. The size of the IONCs (range 13–30 nm) is coarse-tuned by adjusting the amount of benzaldehyde ligand, while fine-size tuning is achieved by changing temperature and minute-reaction time. IONCs exhibit superparamagnetic behavior at 298 K with saturation magnetization over 80 emu gIONC−1 and possess high specific absorption rate values (SAR) up to 400 W gFe−1 at clinical AMF conditions. These results mark a milestone for rapid synthesis of IONCs at high yield conversion of well-defined size and shape nanocubes with benchmark MHT heat performance while using a fast route, with limited energy consumption which makes this method greener and cheaper than previous ones.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波辅助合成中的形状控制:具有基准磁热损失的尺寸可调氧化铁纳米立方体的快速途径
氧化铁纳米立方体(IONCs)在交变磁场(AMF)作用下能有效地将磁能转化为热能,因此是磁热疗(MHT)中最有前景的肿瘤治疗材料之一。传统的 IONCs 合成方法基于热分解法,受限于反应时间长(数小时)和毫克级的产量;而溶热法可生产克级的高质量 IONCs,但反应时间为数小时。在这项工作中,报告了一种微波辅助的形状可控 IONC 路线,该路线可将反应时间缩短至几分钟,同时实现高达 80% 的高铁转化率。通过调整苯甲醛配体的用量可粗调 IONC 的尺寸(范围为 13-30 纳米),而通过改变温度和分钟反应时间则可实现微调。IONC 在 298 K 时具有超顺磁性,饱和磁化率超过 80 emu gIONC-1,并且在临床 AMF 条件下具有高达 400 W gFe-1 的高比吸收率 (SAR)。这些结果标志着以高产率快速合成 IONCs 的里程碑,该方法不仅能转化出具有基准 MHT 热性能的明确尺寸和形状的纳米立方体,而且采用了快速路线,能耗有限,因此比以前的方法更环保、更便宜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Deuteration-Induced Superior Properties in Polymer/Soluble Acene Blends: A Comprehensive Study The Evolution of Underwater Microelectronic Encapsulation: An Universal Marine Wearable Hydrogel Triple-Functional Amorphous In2O3 Anode Protection Layer Design for High-Performance Aqueous Zinc Ion Batteries Shape-Control in Microwave-Assisted Synthesis: A Fast Route to Size-Tunable Iron Oxide Nanocubes with Benchmark Magnetic Heat Losses Advances in In Situ TEM for Dynamic Studies of Carbon-Based Anodes in Alkali Metal-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1