Kangjie Ma, Hainan Gong, Lin Wang, Bo Liu, Yulan Li, Huanhuan Ran, Wen Chen
{"title":"Anthropogenic forcing intensified internally driven concurrent heatwaves in August 2022 across the Northern Hemisphere","authors":"Kangjie Ma, Hainan Gong, Lin Wang, Bo Liu, Yulan Li, Huanhuan Ran, Wen Chen","doi":"10.1038/s41612-024-00828-6","DOIUrl":null,"url":null,"abstract":"In August 2022, unprecedented and long-lasting extreme heatwaves attacked the Northern Hemisphere, with simultaneous record-breaking surface air temperature (SAT) in Eastern Europe (EE), Southern China (SC), and Western North America (WNA). However, the underlying physical mechanisms of these concurrent heatwaves, and the extent to which they are driven by anthropogenic forcing versus internal variability remain unclear. Our analysis using the HadGEM3-A-N216 large ensemble attribution model reveals that anthropogenic forcing is responsible for approximately 50% of the heatwaves in EE and SC, and over 80% in WNA. Furthermore, an internally-generated circumglobal atmospheric wave train is identified as a key circulation factor facilitating these simultaneous heatwaves. Observations and numerical simulations indicate that extreme warm sea surface temperature (SST) anomalies in the North Atlantic, North Pacific and Barents Sea, along with extreme cold SST anomalies in the tropical central Pacific, are critical in the formation and maintenance of this atmospheric teleconnection wave train. Under future high-emission scenarios, the influence of the internally-generated atmospheric teleconnection on concurrent heatwaves may be enhanced, particularly in WNA.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00828-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00828-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In August 2022, unprecedented and long-lasting extreme heatwaves attacked the Northern Hemisphere, with simultaneous record-breaking surface air temperature (SAT) in Eastern Europe (EE), Southern China (SC), and Western North America (WNA). However, the underlying physical mechanisms of these concurrent heatwaves, and the extent to which they are driven by anthropogenic forcing versus internal variability remain unclear. Our analysis using the HadGEM3-A-N216 large ensemble attribution model reveals that anthropogenic forcing is responsible for approximately 50% of the heatwaves in EE and SC, and over 80% in WNA. Furthermore, an internally-generated circumglobal atmospheric wave train is identified as a key circulation factor facilitating these simultaneous heatwaves. Observations and numerical simulations indicate that extreme warm sea surface temperature (SST) anomalies in the North Atlantic, North Pacific and Barents Sea, along with extreme cold SST anomalies in the tropical central Pacific, are critical in the formation and maintenance of this atmospheric teleconnection wave train. Under future high-emission scenarios, the influence of the internally-generated atmospheric teleconnection on concurrent heatwaves may be enhanced, particularly in WNA.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.