Thiosulfate-Mediated Polysulfide Redox for Energetic Aqueous Battery

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-27 DOI:10.1002/anie.202420514
Yutong Feng, Xiaoyu Yu, Boya Wang, Tengsheng Zhang, Wanhai Zhou, Yifeng Wang, Xinran Li, Jian Zhao, Jingwen Zhao, Prof. Wei Li, Chenyan Ma, Prof. Dongyuan Zhao, Prof. Dongliang Chao
{"title":"Thiosulfate-Mediated Polysulfide Redox for Energetic Aqueous Battery","authors":"Yutong Feng,&nbsp;Xiaoyu Yu,&nbsp;Boya Wang,&nbsp;Tengsheng Zhang,&nbsp;Wanhai Zhou,&nbsp;Yifeng Wang,&nbsp;Xinran Li,&nbsp;Jian Zhao,&nbsp;Jingwen Zhao,&nbsp;Prof. Wei Li,&nbsp;Chenyan Ma,&nbsp;Prof. Dongyuan Zhao,&nbsp;Prof. Dongliang Chao","doi":"10.1002/anie.202420514","DOIUrl":null,"url":null,"abstract":"<p>Sulfur-based aqueous batteries (SABs) are regarded as promising candidates for safe, low-cost, and high-energy storage. However, the sluggish redox kinetics of polysulfides pose a significant challenge to the practical performance of SABs. Herein, we report a unique redox regulation strategy that leverages thiosulfate-mediated ligand-chain interaction to accelerate the polysulfide redox process (S<sup>0</sup>/S<sup>2−</sup>). The S<sub>2</sub>O<sub>3</sub><sup>2−</sup> species in the electrolyte can induce the rapid reduction of polysulfide through a spontaneous chemical reaction with sulfur species, while facilitating the reversible oxidation of short-chain sulfides. Moreover, the thiosulfate redox pair (S<sub>2</sub>O<sub>3</sub><sup>2−</sup>/S<sub>4</sub>O<sub>6</sub><sup>2−</sup>) within the K<sub>2</sub>S<sub>2</sub>O<sub>3</sub> electrolyte contributes additional capacity at higher potential (E<sup>0</sup> &gt;0 V vs SHE). Consequently, the elaborate SAB delivers an unprecedented K<sup>+</sup> storage capacity of 2470 mAh g<sub>s</sub><sup>−1</sup>, coupled with a long cycling life exceeding 1000 cycles. Remarkably, thiosulfate-mediated SAB achieves an energy density of 616 Wh kg<sub>S+Zn</sub><sup>−1</sup>, surpassing both organic K–S batteries and conventional aqueous battery systems. This work elucidates the mechanism underlying the thiosulfate-mediated polysulfide redox process, thereby opening a pathway for the development of high-energy aqueous batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202420514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur-based aqueous batteries (SABs) are regarded as promising candidates for safe, low-cost, and high-energy storage. However, the sluggish redox kinetics of polysulfides pose a significant challenge to the practical performance of SABs. Herein, we report a unique redox regulation strategy that leverages thiosulfate-mediated ligand-chain interaction to accelerate the polysulfide redox process (S0/S2−). The S2O32− species in the electrolyte can induce the rapid reduction of polysulfide through a spontaneous chemical reaction with sulfur species, while facilitating the reversible oxidation of short-chain sulfides. Moreover, the thiosulfate redox pair (S2O32−/S4O62−) within the K2S2O3 electrolyte contributes additional capacity at higher potential (E0 >0 V vs SHE). Consequently, the elaborate SAB delivers an unprecedented K+ storage capacity of 2470 mAh gs−1, coupled with a long cycling life exceeding 1000 cycles. Remarkably, thiosulfate-mediated SAB achieves an energy density of 616 Wh kgS+Zn−1, surpassing both organic K–S batteries and conventional aqueous battery systems. This work elucidates the mechanism underlying the thiosulfate-mediated polysulfide redox process, thereby opening a pathway for the development of high-energy aqueous batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫代硫酸盐介导的多硫化物氧化还原用于高能水电池
硫基水电池(SABs)被认为是安全、低成本和高能量存储的理想候选电池。然而,多硫化物缓慢的氧化还原动力学对 SAB 的实际性能构成了巨大挑战。在此,我们报告了一种独特的氧化还原调节策略,该策略利用硫代硫酸盐介导的配体链相互作用来加速多硫化物的氧化还原过程(S0/S2-)。电解质中的 S2O32- 物种可通过与硫物种的自发化学反应诱导多硫化物快速还原,同时促进短链硫化物的可逆氧化。此外,K2S2O3 电解质中的硫代硫酸盐氧化还原对(S2O32-/S4O62-)在较高电位(E0 > 0 V vs SHE)时可产生额外的容量。因此,精心制作的 SAB 可提供前所未有的 2470 mAh gs-1 K+ 储存容量,同时循环寿命超过 1000 次。值得注意的是,硫代硫酸盐介导的 SAB 实现了 616 Wh kgS+Zn-1 的能量密度,超过了有机 K-S 电池和传统的水电池系统。这项研究阐明了硫代硫酸盐介导的多硫化物氧化还原过程的基本机制,从而为开发高能水性电池开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Photobiocatalytic Reaction: From Single Component to Triple Component Coupling Photocatalytic Reduction and Biosynthesis towards Sustainable CO2 Upcycling Nanoconfinement-induced Electrochemical Ion-Solvent Cointercalation in Pillared Titanate Host Materials Pure Hydrocarbon Hosts Enabling Efficient Multi-Resonance TADF Blue-Emitting Organic Light-Emitting Diodes Ferritin–Inspired Encapsulation and Stabilization of Gold Nanoclusters for High–Performance Photothermal Conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1