Covalent Organic Frameworks for Boosting H2O2 Photosynthesis via the Synergy of Multiple Charge Transfer Channels and Polarized Field

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-27 DOI:10.1002/anie.202420218
Zifan Li, Zhimin Dong, Zhibin Zhang, Bingqing Wei, Cheng Meng, Wen Zhai, Youqun Wang, Xiaohong Cao, Bin Han, Yunhai Liu
{"title":"Covalent Organic Frameworks for Boosting H2O2 Photosynthesis via the Synergy of Multiple Charge Transfer Channels and Polarized Field","authors":"Zifan Li, Zhimin Dong, Zhibin Zhang, Bingqing Wei, Cheng Meng, Wen Zhai, Youqun Wang, Xiaohong Cao, Bin Han, Yunhai Liu","doi":"10.1002/anie.202420218","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks (COFs) serve as one of the most promising candidates for hydrogen peroxide (H2O2) photosynthesis, while attaining high-performance COFs remains a formidable challenge due to the insufficient separation of photogenerated charges. Here, through the rational design of bicarbazole-based COFs (Cz-COFs), we showcase the first achievement in piezo-photocatalytic synthesis of H2O2 using COFs. Noteworthily, the ethenyl group-modified Cz-COFs (COF-DH-Eth) demonstrates a record-high yield of H2O2 (9212 μmol g-1 h-1) from air and pure water through piezo-photocatalysis, which is ca. 2.5 times higher than that of pristine Cz-COFs without ethenyl groups (COF-DH-H) under identical condition and COF-DH-Eth without ultrasonic treatment. The H2O2 production rate originates from the synergistic effect between an ultrasonication-induced polarized electric field and the spatially separated multiple charge transfer channels, which significantly promote the utilization of photogenerated electrons by directional transfer from bicarbazole groups to the ethenyl group-modified benzene rings. Several Cz-COFs and bifluorenylidene-based COFs (COF-BFTB-H) with similar twisted monomers exhibit obvious piezoelectric performance for promoting H2O2 generation, signifying that organic ligands with a twistable structure play a crucial role in creating broken symmetry structures, thereby establishing piezoelectric properties in COFs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"7 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420218","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) serve as one of the most promising candidates for hydrogen peroxide (H2O2) photosynthesis, while attaining high-performance COFs remains a formidable challenge due to the insufficient separation of photogenerated charges. Here, through the rational design of bicarbazole-based COFs (Cz-COFs), we showcase the first achievement in piezo-photocatalytic synthesis of H2O2 using COFs. Noteworthily, the ethenyl group-modified Cz-COFs (COF-DH-Eth) demonstrates a record-high yield of H2O2 (9212 μmol g-1 h-1) from air and pure water through piezo-photocatalysis, which is ca. 2.5 times higher than that of pristine Cz-COFs without ethenyl groups (COF-DH-H) under identical condition and COF-DH-Eth without ultrasonic treatment. The H2O2 production rate originates from the synergistic effect between an ultrasonication-induced polarized electric field and the spatially separated multiple charge transfer channels, which significantly promote the utilization of photogenerated electrons by directional transfer from bicarbazole groups to the ethenyl group-modified benzene rings. Several Cz-COFs and bifluorenylidene-based COFs (COF-BFTB-H) with similar twisted monomers exhibit obvious piezoelectric performance for promoting H2O2 generation, signifying that organic ligands with a twistable structure play a crucial role in creating broken symmetry structures, thereby establishing piezoelectric properties in COFs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多电荷转移通道和极化场的协同作用促进 H2O2 光合作用的共价有机框架
共价有机框架(COFs)是最有希望用于过氧化氢(H2O2)光合作用的候选材料之一,但由于光生电荷分离不充分,实现高性能 COFs 仍然是一项艰巨的挑战。在此,我们通过合理设计基于双咔唑的 COFs(Cz-COFs),首次展示了利用 COFs 压电光催化合成 H2O2 的成果。值得注意的是,乙烯基修饰的 Cz-COFs (COF-DH-Eth)通过压电光催化从空气和纯水中获得了创纪录的高产率 H2O2(9212 μmol g-1 h-1),比相同条件下不含乙烯基的原始 Cz-COFs (COF-DH-H)和未经超声波处理的 COF-DH-Eth 高出约 2.5 倍。H2O2 生成率源于超声诱导的极化电场与空间上分离的多重电荷转移通道之间的协同效应,后者通过从双咔唑基团向乙烯基修饰的苯环定向转移,显著促进了光生电子的利用。几种具有类似扭曲单体的 Cz-COF 和双芴基 COF(COF-BFTB-H)在促进 H2O2 生成方面表现出明显的压电性能,这表明具有可扭曲结构的有机配体在创建破碎对称结构方面发挥了关键作用,从而在 COF 中建立了压电特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research Unveiling the Structure-Fluorogenic Property Relationship of Seoul-Fluor-Derived Bioorthogonal Tetrazine Probes Quantitative Formation of Octa-substituted Cyclobutanes by the [2+2] Photocycloaddition of Stiff-stilbenes Benzothiadiazole-Fused Cyanoindone: A Superior Building Block for Designing Ultra-Narrow Bandgap Electron Acceptor with Long-Range Ordered Stacking Selection of Plastic-Binding DNA Aptamers for Microplastics Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1