A High-Performance and Flexible Electrothermal Heater with Bending Tolerance from Layer-by-Layer Self-Assembled Graphite Nanoplates and Carbon Black on Paper
{"title":"A High-Performance and Flexible Electrothermal Heater with Bending Tolerance from Layer-by-Layer Self-Assembled Graphite Nanoplates and Carbon Black on Paper","authors":"Zhou Bai, Zhijian Li, Huacui Xiang, Xiaohong Jiang, Haiwei Wu, Guodong Liu, Jiajie Liu, Hongwei Zhou and Hanbin Liu*, ","doi":"10.1021/acsaelm.4c0160510.1021/acsaelm.4c01605","DOIUrl":null,"url":null,"abstract":"<p >The flexible electrothermal heaters based on the Joule heating effect have attracted extensive attention in recent years due to their wide range of applications in personal thermal management and wearable devices. However, the fabrication of this kind of flexible heater with high performance but at low cost remains a challenge. Here in this work, a high-performance and flexible electrothermal heater was developed through layer-by-layer self-assembly of graphite nanoplates (GNPs) and carbon black (CB) on paper driven by capillarity. The resistivity of the assembled GNP/CB layer was around 0.02 Ω·cm after dip-coating 10 times. The heater reached a maximum temperature of 197.3 °C with a heating rate of 23 °C s<sup>–1</sup> under a relatively low voltage of 6 V. Importantly, no attenuation of the heating performance was observed under deformation of the device. This flexible electrothermal heater may find versatile applications, including water heating, deicing, wearable devices, and medical treatments.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8384–8393 8384–8393"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01605","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The flexible electrothermal heaters based on the Joule heating effect have attracted extensive attention in recent years due to their wide range of applications in personal thermal management and wearable devices. However, the fabrication of this kind of flexible heater with high performance but at low cost remains a challenge. Here in this work, a high-performance and flexible electrothermal heater was developed through layer-by-layer self-assembly of graphite nanoplates (GNPs) and carbon black (CB) on paper driven by capillarity. The resistivity of the assembled GNP/CB layer was around 0.02 Ω·cm after dip-coating 10 times. The heater reached a maximum temperature of 197.3 °C with a heating rate of 23 °C s–1 under a relatively low voltage of 6 V. Importantly, no attenuation of the heating performance was observed under deformation of the device. This flexible electrothermal heater may find versatile applications, including water heating, deicing, wearable devices, and medical treatments.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico