Jinmei Wei , Chenglu Liu , Lin Shi , Yongpin Liu , Huidan Lu
{"title":"High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors","authors":"Jinmei Wei , Chenglu Liu , Lin Shi , Yongpin Liu , Huidan Lu","doi":"10.1016/j.carbpol.2024.122943","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 122943"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014486172401169X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt). The multifunctional hydrogels (PAA-SCMC) possess excellent mechanical property (stress: 0.25 MPa; strain: 1675.0 %), Young's modulus (75.6 kPa), and conductivity (2.25 S/m). The multifunctional PAA-SCMC hydrogels serve as strain sensors (Gauge Factor (GF) = 12.68), temperature sensors (temperature coefficient of resistance (TCR) = −0.887 % °C at 20 °C–60 °C), sweat sensors, and pressure sensors. Importantly, the obtained hydrogels exhibited exceptional self-healing capability, self-adhesive properties, antimicrobial properties and 3D printability. The printed hydrogel has good mechanical properties, conductivity and antibacterial properties. Moreover, the hydrogel sensor possessed prominent sensitivity and cyclic stability to accurately monitor human motion, emotional changes, physiological signals in real time, and a hydrogel-based flexible touch keyboard was also fabricated to recognize writing trajectories. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional flexible electronic skin sensors.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.