{"title":"Quantum Fisher information in one-dimensional translation-invariant quantum systems: Large-N limit analysis","authors":"Shu Qu , Fan-Qin Xu , Bin Guo , Zhao-Yu Sun","doi":"10.1016/j.physleta.2024.130103","DOIUrl":null,"url":null,"abstract":"<div><div>The large-<em>N</em> limit is a crucial property in many-body quantum systems, playing a important role in advancing quantum theories and technologies. This paper explores the large-<em>N</em> limit of quantum Fisher information (QFI), an experimentally accessible quantum information measure, in one-dimensional (1D) translation-invariant quantum systems. We demonstrate that QFI generally scales as <span><math><msub><mrow><mi>ϱ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>ϱ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>N</mi></math></span> in the large-<em>N</em> limit for these systems. Notably, we present a method to extract the scaling coefficients <span><math><mo>{</mo><msub><mrow><mi>ϱ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> using triangular-matrix-product-operator theory and infinite tensor-network algorithms, circumventing the need for finite-size scaling fittings. By analyzing ground states in infinite-size transverse-field Ising chains and cluster chains, we reveal that <span><math><mo>{</mo><msub><mrow><mi>ϱ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> offer a concise and informative approach to characterize the achievable precision limit in parameter estimations, metrologically useful multipartite entanglement, quantum criticality, and their relationship in these systems in the large-<em>N</em> limit.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"529 ","pages":"Article 130103"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007977","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The large-N limit is a crucial property in many-body quantum systems, playing a important role in advancing quantum theories and technologies. This paper explores the large-N limit of quantum Fisher information (QFI), an experimentally accessible quantum information measure, in one-dimensional (1D) translation-invariant quantum systems. We demonstrate that QFI generally scales as in the large-N limit for these systems. Notably, we present a method to extract the scaling coefficients using triangular-matrix-product-operator theory and infinite tensor-network algorithms, circumventing the need for finite-size scaling fittings. By analyzing ground states in infinite-size transverse-field Ising chains and cluster chains, we reveal that offer a concise and informative approach to characterize the achievable precision limit in parameter estimations, metrologically useful multipartite entanglement, quantum criticality, and their relationship in these systems in the large-N limit.
大 N 极限是多体量子系统的一个重要特性,在推动量子理论和技术发展方面发挥着重要作用。本文探讨了一维(1D)平移不变量子系统中量子费雪信息(QFI)的大 N 极限,这是一种实验上可获得的量子信息度量。我们证明,在这些系统的大 N 极限,QFI 通常以ϱ2N2+ϱ1N 的方式扩展。值得注意的是,我们提出了一种利用三角矩阵-乘积-算子理论和无限张量网络算法提取缩放系数{ϱi}的方法,从而避免了对有限大小缩放配件的需求。通过分析无限大横向场伊辛链和簇链的基态,我们发现{ϱi}提供了一种简洁而信息丰富的方法,用于描述这些系统在大N极限下参数估计的可实现精度极限、计量学上有用的多方纠缠、量子临界度以及它们之间的关系。
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.