Tuan Anh Bui , Marleen De Troch , Jan Jaap Poos , Adriaan Rijnsdorp , Bruno Ernande , Karen Bekaert , Kélig Mahé , Kelly Díaz , Jochen Depestele
{"title":"Otolith increments in common sole (Solea solea) reveal fish growth plasticity to temperature","authors":"Tuan Anh Bui , Marleen De Troch , Jan Jaap Poos , Adriaan Rijnsdorp , Bruno Ernande , Karen Bekaert , Kélig Mahé , Kelly Díaz , Jochen Depestele","doi":"10.1016/j.ecss.2024.109041","DOIUrl":null,"url":null,"abstract":"<div><div>Phenotypic plasticity is a major mechanism allowing organisms to respond to environmental variability. Understanding phenotypic plasticity of organisms to warming is crucial to predict future impacts of climate change. In this study, we investigated fish growth plasticity to temperature using a large archive of otoliths collected from 1960 to 2020, providing growth data over the period 1958–2019, of three common sole (<em>Solea solea</em>) populations: North Sea, Irish Sea, and Bay of Biscay. We used mixed-effects models to partition growth variation into its intrinsic (age, age at capture) and extrinsic (temperature, density, fishing pressure, nutrient) components; to disentangle individual-level plasticity from the population-level response to temperature; and to assess the environmental dependency of growth plasticity. We demonstrated that sole growth plasticity followed the Temperature-Size Rule with increasing juvenile growth and decreasing adult growth at higher temperature. Under favourable conditions for sole growth, the positive response to warming in juvenile fish is stronger while the negative response in adult fish is weaker and the individual plasticity variance is lower. Our study provides additional support for the universality of the Temperature-Size Rule and contributes to our understanding of fish populations’ responses to current and future climate change.</div></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"312 ","pages":"Article 109041"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272771424004293","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenotypic plasticity is a major mechanism allowing organisms to respond to environmental variability. Understanding phenotypic plasticity of organisms to warming is crucial to predict future impacts of climate change. In this study, we investigated fish growth plasticity to temperature using a large archive of otoliths collected from 1960 to 2020, providing growth data over the period 1958–2019, of three common sole (Solea solea) populations: North Sea, Irish Sea, and Bay of Biscay. We used mixed-effects models to partition growth variation into its intrinsic (age, age at capture) and extrinsic (temperature, density, fishing pressure, nutrient) components; to disentangle individual-level plasticity from the population-level response to temperature; and to assess the environmental dependency of growth plasticity. We demonstrated that sole growth plasticity followed the Temperature-Size Rule with increasing juvenile growth and decreasing adult growth at higher temperature. Under favourable conditions for sole growth, the positive response to warming in juvenile fish is stronger while the negative response in adult fish is weaker and the individual plasticity variance is lower. Our study provides additional support for the universality of the Temperature-Size Rule and contributes to our understanding of fish populations’ responses to current and future climate change.
期刊介绍:
Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.