Dual graph-regularized low-rank representation for hyperspectral image denoising

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-23 DOI:10.1016/j.engappai.2024.109659
Chengcai Leng , Mingpei Tang , Zhao Pei , Jinye Peng , Anup Basu
{"title":"Dual graph-regularized low-rank representation for hyperspectral image denoising","authors":"Chengcai Leng ,&nbsp;Mingpei Tang ,&nbsp;Zhao Pei ,&nbsp;Jinye Peng ,&nbsp;Anup Basu","doi":"10.1016/j.engappai.2024.109659","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperspectral images have a wide range of applications in many fields. However, when hyperspectral images are captured by spectrometers, there is inevitably considerable noise, which affects subsequent research. In recent years, many hyperspectral image denoising methods based on low-rank representations have been proposed. Artificial intelligence denoising methods are also popular. However, the research on multi noise denoising is rarely mentioned, and most literatures only focus on one noise in hyperspectral images. Thus, we propose a denoising model for hyperspectral image based on dual graph-regularized low-rank representation, which can not only reduce multiple types of noise simultaneously, but also preserves details of the original image. In particular, this is the first time that the dual low-rank representation and dual graph regularizations are used on hyperspectral images. We solve this method using the linearized alternating direction method with adaptive penalty. Finally, we conduct experiments on simulated and real data sets to verify the effectiveness of our method. The experimental results show that our method can not only effectively remove a variety of mixed noises, but also well retain the details of the image.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109659"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018177","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral images have a wide range of applications in many fields. However, when hyperspectral images are captured by spectrometers, there is inevitably considerable noise, which affects subsequent research. In recent years, many hyperspectral image denoising methods based on low-rank representations have been proposed. Artificial intelligence denoising methods are also popular. However, the research on multi noise denoising is rarely mentioned, and most literatures only focus on one noise in hyperspectral images. Thus, we propose a denoising model for hyperspectral image based on dual graph-regularized low-rank representation, which can not only reduce multiple types of noise simultaneously, but also preserves details of the original image. In particular, this is the first time that the dual low-rank representation and dual graph regularizations are used on hyperspectral images. We solve this method using the linearized alternating direction method with adaptive penalty. Finally, we conduct experiments on simulated and real data sets to verify the effectiveness of our method. The experimental results show that our method can not only effectively remove a variety of mixed noises, but also well retain the details of the image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高光谱图像去噪的双图正则化低秩表示法
高光谱图像在许多领域都有广泛的应用。然而,当高光谱图像由光谱仪采集时,不可避免地会产生大量噪声,影响后续研究。近年来,人们提出了许多基于低秩表示的高光谱图像去噪方法。人工智能去噪方法也很流行。然而,关于多噪声去噪的研究却很少被提及,大多数文献只关注高光谱图像中的一种噪声。因此,我们提出了一种基于双图规则化低秩表示的高光谱图像去噪模型,它不仅能同时降低多种噪声,还能保留原始图像的细节。尤其是,这是首次在高光谱图像中使用双低秩表示和双图正则化。我们使用带有自适应惩罚的线性化交替方向法来求解这种方法。最后,我们在模拟和真实数据集上进行了实验,以验证我们方法的有效性。实验结果表明,我们的方法不仅能有效去除各种混合噪声,还能很好地保留图像的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples Deep interval type-2 generalized fuzzy hyperbolic tangent system for nonlinear regression prediction A multi-scale feature fusion network based on semi-channel attention for seismic phase picking Editorial Board Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1