Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.08.011
Zhendong Yang , Bin Tang , Dehang Ren , Xinyu Yu , Yirong Gao , Yifan Wu , Yongan Yang , Zhongfang Chen , Zhen Zhou
{"title":"Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes","authors":"Zhendong Yang ,&nbsp;Bin Tang ,&nbsp;Dehang Ren ,&nbsp;Xinyu Yu ,&nbsp;Yirong Gao ,&nbsp;Yifan Wu ,&nbsp;Yongan Yang ,&nbsp;Zhongfang Chen ,&nbsp;Zhen Zhou","doi":"10.1016/j.mattod.2024.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state sodium batteries are among the most promising candidates for replacing conventional lithium-ion batteries for next-generation electrochemical energy storage systems. Their advantages include abundant Na resources, lower cost, enhanced safety, and high energy density. Central to the development of these batteries is the use of all-solid-state sodium electrolytes, with sulfide-based solid electrolytes emerging as particularly viable due to their high ionic conductivity (on par with liquid electrolytes), favorable interfacial contact with electrodes, and mild preparation conditions. Despite these benefits, several crucial challenges limit the development of sulfide-based solid electrolytes, including a narrow electrochemical stability window, unstable interface between sulfide-based solid electrolytes and electrodes, and the growth of detrimental sodium dendrites. This review examines the fundamental ion transport mechanism in sulfide-based solid electrolytes, discusses the primary challenges and strategic solutions, and separately addresses the critical interfacial issues at the cathode and anode. It also highlights the importance of scaling up these techniques for industrial applications. Finally, this review offers key recommendations for advancing the industrialization and enhancing the energy density of sulfide-based solid-state sodium batteries. Hopefully, solid-state sodium batteries based on sulfide-based solid electrolytes will achieve significant breakthroughs in energy density and industrial scalability in the very near future.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 429-449"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001767","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state sodium batteries are among the most promising candidates for replacing conventional lithium-ion batteries for next-generation electrochemical energy storage systems. Their advantages include abundant Na resources, lower cost, enhanced safety, and high energy density. Central to the development of these batteries is the use of all-solid-state sodium electrolytes, with sulfide-based solid electrolytes emerging as particularly viable due to their high ionic conductivity (on par with liquid electrolytes), favorable interfacial contact with electrodes, and mild preparation conditions. Despite these benefits, several crucial challenges limit the development of sulfide-based solid electrolytes, including a narrow electrochemical stability window, unstable interface between sulfide-based solid electrolytes and electrodes, and the growth of detrimental sodium dendrites. This review examines the fundamental ion transport mechanism in sulfide-based solid electrolytes, discusses the primary challenges and strategic solutions, and separately addresses the critical interfacial issues at the cathode and anode. It also highlights the importance of scaling up these techniques for industrial applications. Finally, this review offers key recommendations for advancing the industrialization and enhancing the energy density of sulfide-based solid-state sodium batteries. Hopefully, solid-state sodium batteries based on sulfide-based solid electrolytes will achieve significant breakthroughs in energy density and industrial scalability in the very near future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进固态钠电池:硫化物固态电解质的现状
固态钠电池是最有希望取代传统锂离子电池的下一代电化学储能系统。它们的优势包括丰富的钠资源、较低的成本、更高的安全性和高能量密度。开发这些电池的核心是使用全固态钠电解质,其中硫化物基固态电解质因其离子电导率高(与液态电解质相当)、与电极的界面接触良好以及制备条件温和而特别可行。尽管硫化物固态电解质具有这些优点,但其发展仍面临一些关键挑战,包括电化学稳定性窗口狭窄、硫化物固态电解质与电极之间的界面不稳定以及有害的钠枝晶生长。本综述探讨了硫化物固体电解质的基本离子传输机制,讨论了主要挑战和战略解决方案,并分别讨论了阴极和阳极的关键界面问题。综述还强调了扩大这些技术的工业应用规模的重要性。最后,本综述为推进硫化物固态钠电池的工业化和提高能量密度提出了重要建议。希望在不久的将来,基于硫化物固体电解质的固态钠电池能在能量密度和工业可扩展性方面取得重大突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1