Recent advances and challenges for bionic solar water evaporation

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.08.018
Ziheng Zhan , Yan Su , Mingzhu Xie , Yinfeng Li , Yong Shuai , Zhaolong Wang
{"title":"Recent advances and challenges for bionic solar water evaporation","authors":"Ziheng Zhan ,&nbsp;Yan Su ,&nbsp;Mingzhu Xie ,&nbsp;Yinfeng Li ,&nbsp;Yong Shuai ,&nbsp;Zhaolong Wang","doi":"10.1016/j.mattod.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><div>Solar water evaporation is a sustainable, efficient, and environmental friendly solution to the freshwater production and energy crisis, which is drawing intensive research interest in recent years all over the world. In this work, we systematically summarize the design principles and recent progress of solar evaporators inspired by nature. Evaporation systems with bionic structures such as roots, stems, leaves, and even animal tissues can not only promote water transport inside the absorbers but also accelerate the solar water evaporation process, leading to a high evaporation rate and energy conversion efficiency. Most significantly, the promising applications of solar vapor generation for seawater desalination, water purification, electricity generation, evaporative cooling and photocatalytic degradation are also highlighted. Finally, the prospects and challenges of the future development of solar water evaporation are discussed in detail.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 529-548"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001834","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar water evaporation is a sustainable, efficient, and environmental friendly solution to the freshwater production and energy crisis, which is drawing intensive research interest in recent years all over the world. In this work, we systematically summarize the design principles and recent progress of solar evaporators inspired by nature. Evaporation systems with bionic structures such as roots, stems, leaves, and even animal tissues can not only promote water transport inside the absorbers but also accelerate the solar water evaporation process, leading to a high evaporation rate and energy conversion efficiency. Most significantly, the promising applications of solar vapor generation for seawater desalination, water purification, electricity generation, evaporative cooling and photocatalytic degradation are also highlighted. Finally, the prospects and challenges of the future development of solar water evaporation are discussed in detail.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿生太阳能水蒸发技术的最新进展与挑战
太阳能水蒸发是解决淡水生产和能源危机的一种可持续、高效、环保的方法,近年来在世界各地引起了广泛的研究兴趣。在这项工作中,我们系统地总结了受大自然启发的太阳能蒸发器的设计原理和最新进展。具有根、茎、叶甚至动物组织等仿生结构的蒸发系统不仅能促进吸收器内部的水输送,还能加速太阳能水蒸发过程,从而实现高蒸发率和能量转换效率。最重要的是,还强调了太阳能水蒸气发电在海水淡化、水净化、发电、蒸发冷却和光催化降解方面的应用前景。最后,详细讨论了太阳能水蒸发的未来发展前景和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1