Building ternary mixed matrix membranes with ionic liquid-functional COF fillers for efficient CO2 separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-11-14 DOI:10.1016/j.memsci.2024.123506
Shuai Gu , Lijuan Feng , Guoliu Dai, Feng Zhang, Lifeng Deng, Bo Peng, Haohao Zeng, Chenxiang Ai, Juntao Tang, Guipeng Yu
{"title":"Building ternary mixed matrix membranes with ionic liquid-functional COF fillers for efficient CO2 separation","authors":"Shuai Gu ,&nbsp;Lijuan Feng ,&nbsp;Guoliu Dai,&nbsp;Feng Zhang,&nbsp;Lifeng Deng,&nbsp;Bo Peng,&nbsp;Haohao Zeng,&nbsp;Chenxiang Ai,&nbsp;Juntao Tang,&nbsp;Guipeng Yu","doi":"10.1016/j.memsci.2024.123506","DOIUrl":null,"url":null,"abstract":"<div><div>Developing novel mixed matrix membranes (MMMs) with high CO<sub>2</sub> permeability and selectivity, while overcoming the limitations of traditional MMMs, presents a significant challenge. Herein, we reported a simple and straightforward method to develop ternary mixed matrix membranes (TMMMs) featuring excellent matrix-filler compatibility for CO<sub>2</sub> separation through the modification of the covalent organic framework (COF) using ionic liquid (IL) additives. A novel IL ([Bmim][Tf<sub>2</sub>N]) encapsulated COF filler (IL@TpTta-COF) was facilely prepared, and incorporated into the PIM-1 matrix to develop a series of TMMMs.The incorporation of ILs with high affinity towards CO<sub>2</sub> within the TpTta-COF improves the molecular sieving effect of the functional filler, and helps to enhance polymer-filler interfacial compatibility, and mitigates particle agglomeration during the preparation of TMMMs. Notably, the resultant TMMMs demonstrate remarkable stability, and achieve an impressive CO<sub>2</sub> permeability of 10,035 Barrer and an excellent selectivity of 30.2 for CO<sub>2</sub>/N<sub>2</sub> mixtures, exceeding the Robeson upper bound in 2019. This research underscores the potential of integrating functional additives to produce novel COF-based MMMs with enhanced CO<sub>2</sub> separation efficiency for industrial applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"716 ","pages":"Article 123506"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824011001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing novel mixed matrix membranes (MMMs) with high CO2 permeability and selectivity, while overcoming the limitations of traditional MMMs, presents a significant challenge. Herein, we reported a simple and straightforward method to develop ternary mixed matrix membranes (TMMMs) featuring excellent matrix-filler compatibility for CO2 separation through the modification of the covalent organic framework (COF) using ionic liquid (IL) additives. A novel IL ([Bmim][Tf2N]) encapsulated COF filler (IL@TpTta-COF) was facilely prepared, and incorporated into the PIM-1 matrix to develop a series of TMMMs.The incorporation of ILs with high affinity towards CO2 within the TpTta-COF improves the molecular sieving effect of the functional filler, and helps to enhance polymer-filler interfacial compatibility, and mitigates particle agglomeration during the preparation of TMMMs. Notably, the resultant TMMMs demonstrate remarkable stability, and achieve an impressive CO2 permeability of 10,035 Barrer and an excellent selectivity of 30.2 for CO2/N2 mixtures, exceeding the Robeson upper bound in 2019. This research underscores the potential of integrating functional additives to produce novel COF-based MMMs with enhanced CO2 separation efficiency for industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离子液体功能 COF 填料构建三元混合基质膜,实现高效二氧化碳分离
开发具有高二氧化碳渗透性和选择性的新型混合基质膜(MMMs),同时克服传统混合基质膜的局限性,是一项重大挑战。在此,我们报告了一种简单直接的方法,通过使用离子液体(IL)添加剂改性共价有机框架(COF),开发出具有优异基质-填料兼容性的三元混合基质膜(TMMMs),用于二氧化碳分离。在 TpTta-COF 中加入对 CO2 具有高亲和力的 IL,可提高功能填料的分子筛分效果,有助于增强聚合物与填料的界面相容性,并在制备 TMMMs 的过程中减少颗粒团聚。值得注意的是,所制备的 TMMMs 具有出色的稳定性,其二氧化碳渗透率高达 10,035 巴雷尔,对 CO2/N2 混合物的选择性高达 30.2,超过了 2019 年的罗伯逊上限。这项研究强调了集成功能添加剂生产新型 COF 基 MMM 的潜力,这种 MMM 在工业应用中具有更高的二氧化碳分离效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Thermal-modulated interfacial polymerization towards chlorine-resistant and dense polyester NF membranes for healthy drinking water Threading MOF membranes with polymer chains for superior benzene/cyclohexane separation Natural composite hydrogel regulated interface polymerization to prepare high performance nanofiltration membranes with wrinkled structure Leveraging molecular scale free volume generation to improve gas separation performance of carbon molecular sieve membranes Novel guanidinium functionalized poly(pentafluorostyrene): Synthesis and application as ion-pair membrane in PA doped HT-PEMFC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1