Ferroelectric interface for efficient sodium metal cycling in anode-free solid-state batteries

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.09.018
Chen Sun , Yang Li , Zheng Sun , Xuanyi Yuan , Haibo Jin , Yongjie Zhao
{"title":"Ferroelectric interface for efficient sodium metal cycling in anode-free solid-state batteries","authors":"Chen Sun ,&nbsp;Yang Li ,&nbsp;Zheng Sun ,&nbsp;Xuanyi Yuan ,&nbsp;Haibo Jin ,&nbsp;Yongjie Zhao","doi":"10.1016/j.mattod.2024.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>Anode-free solid-state batteries (AFSSBs) are considered one of the promising solutions for achieving high energy density and safety of electrochemical energy storage systems. However, owing to mechanochemical contact losses and metallic dendrite growth caused by the degradation at the current collector (CC)/electrolyte interface, the feasibility of AFSSBs is critically limited, especially upon the involvement of rigid ceramic electrolytes. Here, a new strategy is reported for NASICON-structure Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> (NZSP) electrolyte-based AFSSBs by introducing a resilient ferroelectric composite substrate coated onto Al CC, eventually achieving efficient and stable operation. Compared with the bare Al foil, the ferroelectric composite substrate not only renders an intimate CC/electrolyte interface compatibility, but also dynamically regulates the distribution and migration of Na<sup>+</sup> flux at the CC/electrolyte interface through the built-in electric field stem from ferroelectric BaTiO<sub>3</sub>, guiding homogeneous and dense sodium metal deposition. Stable plating/stripping cycling can be achieved even at a high current density of 1.2mA cm<sup>−2</sup> with the Coulombic efficiency of (99.7 %). Significantly, the NZSP-based AFSSB integrated with the ferroelectric composite substrate and mainstream sodium ion cathodes demonstrates stable cycling and excellent capacity retention.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 395-405"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002244","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anode-free solid-state batteries (AFSSBs) are considered one of the promising solutions for achieving high energy density and safety of electrochemical energy storage systems. However, owing to mechanochemical contact losses and metallic dendrite growth caused by the degradation at the current collector (CC)/electrolyte interface, the feasibility of AFSSBs is critically limited, especially upon the involvement of rigid ceramic electrolytes. Here, a new strategy is reported for NASICON-structure Na3Zr2Si2PO12 (NZSP) electrolyte-based AFSSBs by introducing a resilient ferroelectric composite substrate coated onto Al CC, eventually achieving efficient and stable operation. Compared with the bare Al foil, the ferroelectric composite substrate not only renders an intimate CC/electrolyte interface compatibility, but also dynamically regulates the distribution and migration of Na+ flux at the CC/electrolyte interface through the built-in electric field stem from ferroelectric BaTiO3, guiding homogeneous and dense sodium metal deposition. Stable plating/stripping cycling can be achieved even at a high current density of 1.2mA cm−2 with the Coulombic efficiency of (99.7 %). Significantly, the NZSP-based AFSSB integrated with the ferroelectric composite substrate and mainstream sodium ion cathodes demonstrates stable cycling and excellent capacity retention.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无阳极固态电池中金属钠高效循环的铁电界面
无阳极固态电池(AFSSB)被认为是实现电化学储能系统高能量密度和安全性的理想解决方案之一。然而,由于集流体(CC)/电解质界面降解引起的机械化学接触损失和金属枝晶生长,AFSSB 的可行性受到严重限制,尤其是在使用刚性陶瓷电解质时。本文报告了一种基于 NASICON 结构的 Na3Zr2Si2PO12(NZSP)电解质的 AFSSB 的新策略,即在 Al CC 上涂覆弹性铁电复合基底,最终实现高效稳定的运行。与裸铝箔相比,铁电复合基底不仅能使 CC 与电解质界面紧密兼容,还能通过铁电 BaTiO3 的内置电场干系动态调节 Na+ 通量在 CC 与电解质界面的分布和迁移,引导金属钠均匀致密地沉积。即使在 1.2mA cm-2 的高电流密度下,也能实现稳定的电镀/剥离循环,库仑效率高达(99.7%)。值得注意的是,基于 NZSP 的 AFSSB 集成了铁电复合基底和主流钠离子阴极,可实现稳定的循环和出色的容量保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1