Optimizing entropy-stabilized synthesis kinetics to modulate the oxygen evolution mechanism

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-11-01 DOI:10.1016/j.mattod.2024.08.014
Zeshuo Meng , Hengyue Xu , Zhengyan Du , Zijin Xu , Jian Xu , Wei Zhang , Xiaoying Hu , Haoteng Sun , Hongwei Tian , Jingsan Xu , Weitao Zheng , Sheng Dai
{"title":"Optimizing entropy-stabilized synthesis kinetics to modulate the oxygen evolution mechanism","authors":"Zeshuo Meng ,&nbsp;Hengyue Xu ,&nbsp;Zhengyan Du ,&nbsp;Zijin Xu ,&nbsp;Jian Xu ,&nbsp;Wei Zhang ,&nbsp;Xiaoying Hu ,&nbsp;Haoteng Sun ,&nbsp;Hongwei Tian ,&nbsp;Jingsan Xu ,&nbsp;Weitao Zheng ,&nbsp;Sheng Dai","doi":"10.1016/j.mattod.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><div>Adapting the catalytic reaction pathway and optimizing catalyst activity is a significant challenge in the field of catalysis. Herein, we derived the fundamental form of the diffusion flux-driving force equation using ion diffusion as a research framework, and defined the linear and exponential control coefficients that influence synthesis kinetics. By manipulating these control coefficients, we synthesized high-entropy perovskite La(Co<sub>0.2</sub>Cr<sub>0.2</sub>Fe<sub>0.2</sub>Mn<sub>0.2</sub>Ni<sub>0.2</sub>)O<sub>3</sub> samples with different degrees of kinetic control. Phase testing results showed that adjusting the control coefficients resulted in varying degrees of kinetic control. Experimental evidence and theoretical simulations demonstrated that samples with a higher proportion of kinetic control exhibited faster catalytic pathways, following the lattice oxygen oxidation mechanism (LOM), and showed the highest catalytic activity. As the proportion of kinetic control decreased, the oxygen evolution reaction (OER) catalytic pathway underwent corresponding transitions. These findings contribute to a new research paradigm aimed at bridging the gap between synthesis design and catalytic performance.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 167-178"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001792","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Adapting the catalytic reaction pathway and optimizing catalyst activity is a significant challenge in the field of catalysis. Herein, we derived the fundamental form of the diffusion flux-driving force equation using ion diffusion as a research framework, and defined the linear and exponential control coefficients that influence synthesis kinetics. By manipulating these control coefficients, we synthesized high-entropy perovskite La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 samples with different degrees of kinetic control. Phase testing results showed that adjusting the control coefficients resulted in varying degrees of kinetic control. Experimental evidence and theoretical simulations demonstrated that samples with a higher proportion of kinetic control exhibited faster catalytic pathways, following the lattice oxygen oxidation mechanism (LOM), and showed the highest catalytic activity. As the proportion of kinetic control decreased, the oxygen evolution reaction (OER) catalytic pathway underwent corresponding transitions. These findings contribute to a new research paradigm aimed at bridging the gap between synthesis design and catalytic performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化熵稳定合成动力学以调节氧进化机制
调整催化反应路径和优化催化剂活性是催化领域的一项重大挑战。在此,我们以离子扩散为研究框架,推导出了扩散通量驱动力方程的基本形式,并定义了影响合成动力学的线性和指数控制系数。通过操纵这些控制系数,我们合成了不同动力学控制程度的高熵包晶 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 样品。阶段测试结果表明,调整控制系数可获得不同程度的动力学控制。实验证据和理论模拟表明,动力学控制比例较高的样品按照晶格氧氧化机制(LOM)表现出较快的催化路径,并显示出最高的催化活性。随着动力学控制比例的降低,氧进化反应(OER)催化途径也发生了相应的转变。这些发现有助于建立一种新的研究范式,旨在缩小合成设计与催化性能之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity Light-activated polymeric crosslinked nanocarriers as a checkpoint blockade immunoregulatory platform for synergistic tumor therapy Bottom-up growth of high-quality BiOCl twisted homostructures via a precursor regulation strategy Regulating interfacial behavior via reintegration the Helmholtz layer structure towards ultra-stable and wide-temperature-range aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1