Hongya Cheng , Wenqiao Hui , Hanyue Kang , Zhenni Shi , Jianlei Liu , Xin Wang , Fei Qi , Lin Mao , Huiqian Ding , Rongjian Hu , Nabila Begum , Daoqiang Lu , Dandan Chen , Xinyue Cheng , Miaomiao Wan , Dahai Liu , Hsian-Rong Tseng , Shoudong Ye , Xiaobin Xu , Baowei Zhang , Qian Ban
{"title":"SNA·SMNP·CBE system: A novel integrative strategy for β-hemoglobinopathies gene therapy","authors":"Hongya Cheng , Wenqiao Hui , Hanyue Kang , Zhenni Shi , Jianlei Liu , Xin Wang , Fei Qi , Lin Mao , Huiqian Ding , Rongjian Hu , Nabila Begum , Daoqiang Lu , Dandan Chen , Xinyue Cheng , Miaomiao Wan , Dahai Liu , Hsian-Rong Tseng , Shoudong Ye , Xiaobin Xu , Baowei Zhang , Qian Ban","doi":"10.1016/j.nantod.2024.102558","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we developed and demonstrated a novel integrative system—Silica Nanorods (SNA) substrate cell capture combined with Supramolecular Nanoparticle (SMNP) delivery mediated CBE base editing (SNA·SMNP·CBE)—achieving the synchronization of CD34+HSPCs cell capture and gene editing for β-hemoglobinopathies. First, <em>in vitro</em> study shows it enables efficient and precise modification of BCL11A promoter in CD34+HSPCs, yielding the highly editing efficiency of 50.4 %, thus making an alternative strategy to conventional immunomagnetic cell separation and electroporation transfection system mediated CBE editing (IMS·EP·CBE). Then, we transplanted the edited human CD34+HSPCs into severe combined immunodeficiency (SCID) mice by using intraosseous injection strategy. When compared with conventional IMS·EP·CBE methods, our results showed that significantly higher human HBG expression in the bone marrow and peripheral blood of recipient mice, and long-term engraftment, evidenced from similar gene expression profiles to naïve CD34+HSPCs at 14 weeks. Conclusively, our integrative system—SNA·SMNP·CBE·intraosseous injection—offers an appealing novel way for the unique potential of gene therapy in the clinic application for β-hemoglobinopathies patients.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102558"},"PeriodicalIF":13.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224004146","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we developed and demonstrated a novel integrative system—Silica Nanorods (SNA) substrate cell capture combined with Supramolecular Nanoparticle (SMNP) delivery mediated CBE base editing (SNA·SMNP·CBE)—achieving the synchronization of CD34+HSPCs cell capture and gene editing for β-hemoglobinopathies. First, in vitro study shows it enables efficient and precise modification of BCL11A promoter in CD34+HSPCs, yielding the highly editing efficiency of 50.4 %, thus making an alternative strategy to conventional immunomagnetic cell separation and electroporation transfection system mediated CBE editing (IMS·EP·CBE). Then, we transplanted the edited human CD34+HSPCs into severe combined immunodeficiency (SCID) mice by using intraosseous injection strategy. When compared with conventional IMS·EP·CBE methods, our results showed that significantly higher human HBG expression in the bone marrow and peripheral blood of recipient mice, and long-term engraftment, evidenced from similar gene expression profiles to naïve CD34+HSPCs at 14 weeks. Conclusively, our integrative system—SNA·SMNP·CBE·intraosseous injection—offers an appealing novel way for the unique potential of gene therapy in the clinic application for β-hemoglobinopathies patients.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.