K. Sumi, K.S. Supraja, R.C. Aashika, M. Arivanandhan
{"title":"Biomass-derived activated carbon/cerium oxide nanocomposite as adsorptive photocatalyst for effective removal of carcinogenic dye","authors":"K. Sumi, K.S. Supraja, R.C. Aashika, M. Arivanandhan","doi":"10.1016/j.materresbull.2024.113212","DOIUrl":null,"url":null,"abstract":"<div><div>Semiconductor-based photocatalysts offer potential solutions for carcinogenic dye-related issues in water under light irradiation. However, their efficiency is affected by the recombination of photoelectrons and holes. The present study focuses on synthesizing biomass-derived activated carbon (AC), Cerium Oxide (CeO<sub>2</sub>), and AC/CeO<sub>2</sub> (ACO) nanocomposites for toxic dye degradation. The physicochemical properties of samples were analyzed by XRD, SEM, EDX, TEM, UV–visible, Raman, XPS, and PL analysis. The photocatalytic performance of AC, CeO<sub>2,</sub> and ACO nanocomposites was evaluated under dark and light conditions for the removal of carcinogenic Rhodamine B (RhB). ACO nanocomposites exhibited adsorptive-photocatalytic performance, displaying unique adsorption and photocatalytic degradation rates due to their synergistic combination. Remarkably, the ACO-4 composite showed lower recombination of <em>e</em><sup>−</sup>/<em>h</em><sup>+</sup> pairs, thereby exhibiting superior photocatalytic activity compared to other samples. The degradation rate constant under light was 0.1815 min⁻¹ with a half-life time of 3.81 min, whereas in dark, it was 0.0665 min⁻¹ with a half-life time of 10.42 min.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113212"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor-based photocatalysts offer potential solutions for carcinogenic dye-related issues in water under light irradiation. However, their efficiency is affected by the recombination of photoelectrons and holes. The present study focuses on synthesizing biomass-derived activated carbon (AC), Cerium Oxide (CeO2), and AC/CeO2 (ACO) nanocomposites for toxic dye degradation. The physicochemical properties of samples were analyzed by XRD, SEM, EDX, TEM, UV–visible, Raman, XPS, and PL analysis. The photocatalytic performance of AC, CeO2, and ACO nanocomposites was evaluated under dark and light conditions for the removal of carcinogenic Rhodamine B (RhB). ACO nanocomposites exhibited adsorptive-photocatalytic performance, displaying unique adsorption and photocatalytic degradation rates due to their synergistic combination. Remarkably, the ACO-4 composite showed lower recombination of e−/h+ pairs, thereby exhibiting superior photocatalytic activity compared to other samples. The degradation rate constant under light was 0.1815 min⁻¹ with a half-life time of 3.81 min, whereas in dark, it was 0.0665 min⁻¹ with a half-life time of 10.42 min.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.