H.J. Yashwanth , M. Madhukara Naik , M.S. Dileep , Murthy Muniyappa , M. Navya Rani
{"title":"Nitrogen, phosphorous co-doped carbon quantum dots as glucose and lactate sensor","authors":"H.J. Yashwanth , M. Madhukara Naik , M.S. Dileep , Murthy Muniyappa , M. Navya Rani","doi":"10.1016/j.matchemphys.2024.130149","DOIUrl":null,"url":null,"abstract":"<div><div>The present work emphases on the development of a sensor constructed based on the carbon quantum dots (CQDs) doped with heteroatoms such as nitrogen and phosphorous (NPCQDs) by one step microwave radiation assisted method. Cyclic voltammetry and chronoamperometry are used to investigate and compare the sensing performance of CQDs, nitrogen doped CQDs (NCQDs), phosphorous doped CQDs (CQDs) and NPCQDs towards glucose and lactate. It is observed that NPCQDs shows enhanced current response compared to CQDs, NCQDs and PCQDs due to the injection of extra electrons by dopants. Further, NPCQDs sensor exhibited good stability over 5000 s which is excellent in its class.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"331 ","pages":"Article 130149"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025405842401277X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work emphases on the development of a sensor constructed based on the carbon quantum dots (CQDs) doped with heteroatoms such as nitrogen and phosphorous (NPCQDs) by one step microwave radiation assisted method. Cyclic voltammetry and chronoamperometry are used to investigate and compare the sensing performance of CQDs, nitrogen doped CQDs (NCQDs), phosphorous doped CQDs (CQDs) and NPCQDs towards glucose and lactate. It is observed that NPCQDs shows enhanced current response compared to CQDs, NCQDs and PCQDs due to the injection of extra electrons by dopants. Further, NPCQDs sensor exhibited good stability over 5000 s which is excellent in its class.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.