Quercetin-based biomaterials for enhanced bone regeneration and tissue engineering

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2024-11-20 DOI:10.1016/j.tice.2024.102626
Mohammad-Sadegh Lotfi , Mohammad Sheibani , Majid Jafari-Sabet
{"title":"Quercetin-based biomaterials for enhanced bone regeneration and tissue engineering","authors":"Mohammad-Sadegh Lotfi ,&nbsp;Mohammad Sheibani ,&nbsp;Majid Jafari-Sabet","doi":"10.1016/j.tice.2024.102626","DOIUrl":null,"url":null,"abstract":"<div><div>Quercetin, a natural flavonoid, has been extensively researched for its potential in promoting bone regeneration and tissue engineering. This review aimed to provide a comprehensive overview of the applications of quercetin-based biomaterials in bone regeneration and tissue engineering. The review discusses several studies that have integrated quercetin into biomaterials such as electrospun fibers, hydrogels, microspheres, and nanoparticles. These biomaterials are engineered to imitate the natural extracellular matrix of bone, creating an environment conducive to cell attachment, growth, and differentiation.</div><div>The investigations presented emphasize the potential of quercetin-derived biomaterials in improving bone regeneration, decreasing oxidative stress and inflammation, and facilitating bone tissue restoration. These biomaterials have demonstrated the ability to facilitate cell encapsulation, maintain consistent quercetin release patterns, and have been applied in a range of uses such as bone grafts, implants, and tissue engineering scaffolds. Biomaterials derived from quercetin are utilized in the treatment of bone-related disorders, including osteoporosis and bone defects. These materials enhance bone regeneration by providing a scaffold for new bone growth, promoting the development of new bone tissue, and improving the mechanical properties of bone tissue.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"91 ","pages":"Article 102626"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624003276","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quercetin, a natural flavonoid, has been extensively researched for its potential in promoting bone regeneration and tissue engineering. This review aimed to provide a comprehensive overview of the applications of quercetin-based biomaterials in bone regeneration and tissue engineering. The review discusses several studies that have integrated quercetin into biomaterials such as electrospun fibers, hydrogels, microspheres, and nanoparticles. These biomaterials are engineered to imitate the natural extracellular matrix of bone, creating an environment conducive to cell attachment, growth, and differentiation.
The investigations presented emphasize the potential of quercetin-derived biomaterials in improving bone regeneration, decreasing oxidative stress and inflammation, and facilitating bone tissue restoration. These biomaterials have demonstrated the ability to facilitate cell encapsulation, maintain consistent quercetin release patterns, and have been applied in a range of uses such as bone grafts, implants, and tissue engineering scaffolds. Biomaterials derived from quercetin are utilized in the treatment of bone-related disorders, including osteoporosis and bone defects. These materials enhance bone regeneration by providing a scaffold for new bone growth, promoting the development of new bone tissue, and improving the mechanical properties of bone tissue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强骨再生和组织工程的槲皮素基生物材料
槲皮素是一种天然类黄酮,因其在促进骨再生和组织工程方面的潜力而受到广泛研究。本综述旨在全面概述基于槲皮素的生物材料在骨再生和组织工程中的应用。综述讨论了将槲皮素融入电纺纤维、水凝胶、微球和纳米颗粒等生物材料的几项研究。这些研究强调了槲皮素衍生生物材料在改善骨再生、减少氧化应激和炎症以及促进骨组织修复方面的潜力。这些生物材料已证明能够促进细胞包裹,保持稳定的槲皮素释放模式,并已应用于骨移植、植入物和组织工程支架等一系列用途。提取自槲皮素的生物材料可用于治疗骨相关疾病,包括骨质疏松症和骨缺损。这些材料可为新骨生长提供支架,促进新骨组织的发育,改善骨组织的机械性能,从而提高骨再生能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat. Inhibition of proliferation, migration and invasion of RM-1 cells by roemerine: Insights from in vitro and in vivo studies. METTL3/IGF2BP1 promotes the development of triple-negative breast cancer by mediating m6A methylation modification of PRMT7. Decellularization of human iliac artery: A vascular scaffold for peripheral repairs with human mesenchymal cells. Therapeutic potential of adult stem cells-derived mitochondria transfer combined with curcumin administration into ARPE-19 cells in age-related macular degeneration model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1