Innovative Z-scheme MnV₂O₆/g-C₃N₄ nanocomposite: photocatalytic, electrocatalytic and biosensing properties

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-16 DOI:10.1016/j.matchemphys.2024.130159
Muhammad Danish Khan , Masood ul Hassan Farooq , Iqra Fareed , Tahmina Maqsood , Faisal Nawaz , Yahya Sandali , Afrah Alzahrani , Muhammad Tahir , Faheem K. Butt
{"title":"Innovative Z-scheme MnV₂O₆/g-C₃N₄ nanocomposite: photocatalytic, electrocatalytic and biosensing properties","authors":"Muhammad Danish Khan ,&nbsp;Masood ul Hassan Farooq ,&nbsp;Iqra Fareed ,&nbsp;Tahmina Maqsood ,&nbsp;Faisal Nawaz ,&nbsp;Yahya Sandali ,&nbsp;Afrah Alzahrani ,&nbsp;Muhammad Tahir ,&nbsp;Faheem K. Butt","doi":"10.1016/j.matchemphys.2024.130159","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we report Z-scheme mediated pn-junction between manganese vanadate and graphitic carbon nitride, highlighting its photocatalytic degradation capabilities, hydrogen and oxygen evolution reactions and electrochemical biosensing efficacy towards ascorbic acid. The material was synthesized using a co-precipitation method followed by annealing and characterized through XRD, FESEM, FTIR, XPS, UV–visible spectroscopy and EIS in conjunction with Mott-Schottky analysis. The heterojunction demonstrates promising results for photocatalytic degradation of organic dyes. This work further discusses the carrier concentration, decay rate, cyclic stability and photocatalytic degradation mechanism. The results for HER and OER indicate the synthesized material's capability for oxygen and hydrogen production at commercial scale, with Tafel slope calculations providing additional insights. Electrochemical biosensing of ascorbic acid reveals that the material can detect low concentrations of ascorbic acid under various parameters. The results indicate that the material is highly suitable for environmental degradation, electrocatalytic production of hydrogen and oxygen and medical diagnostics such as electrochemical biosensing.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"330 ","pages":"Article 130159"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012872","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report Z-scheme mediated pn-junction between manganese vanadate and graphitic carbon nitride, highlighting its photocatalytic degradation capabilities, hydrogen and oxygen evolution reactions and electrochemical biosensing efficacy towards ascorbic acid. The material was synthesized using a co-precipitation method followed by annealing and characterized through XRD, FESEM, FTIR, XPS, UV–visible spectroscopy and EIS in conjunction with Mott-Schottky analysis. The heterojunction demonstrates promising results for photocatalytic degradation of organic dyes. This work further discusses the carrier concentration, decay rate, cyclic stability and photocatalytic degradation mechanism. The results for HER and OER indicate the synthesized material's capability for oxygen and hydrogen production at commercial scale, with Tafel slope calculations providing additional insights. Electrochemical biosensing of ascorbic acid reveals that the material can detect low concentrations of ascorbic acid under various parameters. The results indicate that the material is highly suitable for environmental degradation, electrocatalytic production of hydrogen and oxygen and medical diagnostics such as electrochemical biosensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创新性 Z 型 MnV₂O₆/g-C₃N₄ 纳米复合材料:光催化、电催化和生物传感特性
在此,我们报告了钒酸锰和氮化石墨碳之间 Z 型介导的 pn-接合,突出了其光催化降解能力、氢和氧进化反应以及对抗坏血酸的电化学生物传感功效。该材料采用共沉淀法合成,然后进行退火,并通过 XRD、FESEM、FTIR、XPS、紫外-可见光谱和 EIS 以及 Mott-Schottky 分析对其进行了表征。该异质结在光催化降解有机染料方面取得了可喜的成果。这项工作进一步讨论了载流子浓度、衰减率、循环稳定性和光催化降解机制。HER 和 OER 的结果表明,合成材料具有商业规模制氧和制氢的能力,而 Tafel 斜率计算则提供了更多的见解。抗坏血酸的电化学生物传感显示,该材料可以在各种参数下检测低浓度的抗坏血酸。结果表明,该材料非常适合用于环境降解、氢气和氧气的电催化生产以及电化学生物传感等医疗诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Colloidal lithography: Synthesis and characterization of SiO2 and TiO2 micro-bowel arrays Effect of V2O5 coatings on NMC 111 battery cathode materials in aqueous process Reduced graphene oxide – CeO2 nanocomposites for photocatalytic dye degradation Structural modification of MgO/Au thin films by aluminum Co-doping and related studies on secondary electron emission Relationship between the shear modulus and volume relaxation in high-entropy metallic glasses: Experiment and physical origin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1