Photovoltaic functionality assessment of InPBi-based solar cells using a combination of density functional theory and finite element method analysis

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-11-26 DOI:10.1016/j.solener.2024.113092
Neelesh Jain , Indranil Mal , Sadhna Singh , Dip Prakash Samajdar
{"title":"Photovoltaic functionality assessment of InPBi-based solar cells using a combination of density functional theory and finite element method analysis","authors":"Neelesh Jain ,&nbsp;Indranil Mal ,&nbsp;Sadhna Singh ,&nbsp;Dip Prakash Samajdar","doi":"10.1016/j.solener.2024.113092","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports the theoretical investigation of the effect of incorporation of dilute Bismuth (Bi) on the optical and electronic properties of zinc blende (ZB) phase Indium Phosphide (InP) using the full-potential linearized augmented plane wave (FP-LAPW) basis set, Perdew-Burke-Ernzerhof (PBE) exchange–correlation (XC) function, and the Tran Blaha modified Becke-Johnson (TB-mBJ) potential in the density functional theory (DFT) computational framework. The obtained results show that the introduction of large-sized Bi impurities into InP increases the lattice constant and reduces the bandgap by 52 meV/Bi%. We have also presented the design of an InP/InP<sub>1−x</sub>Bi<sub>x</sub>/InP planar solar cell (SC) utilizing the computed optical and electronic properties of the investigated InP<sub>1-x</sub>Bi<sub>x</sub> alloy to produce SC with an average absorptance of 65.14% and 62.91% with Bi incorporation of 3.125% and 6.25%, respectively, and an optical current density (J<sub>opt</sub>) of 29.45 mA/cm<sup>2</sup> for Bi concentration of 6.25%. We also thoroughly analyzed two additional parameters, namely the electric field distribution and photogeneration rate. By adding 6.25% Bi into InP, we obtained a band gap of 1 eV, which is perfect for SC design. With this SC, we got the highest short-circuit current density (J<sub>sc</sub>) of 23.23 mA/cm<sup>2</sup> and power conversion efficiency (PCE) of 14.53 %.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"285 ","pages":"Article 113092"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007874","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports the theoretical investigation of the effect of incorporation of dilute Bismuth (Bi) on the optical and electronic properties of zinc blende (ZB) phase Indium Phosphide (InP) using the full-potential linearized augmented plane wave (FP-LAPW) basis set, Perdew-Burke-Ernzerhof (PBE) exchange–correlation (XC) function, and the Tran Blaha modified Becke-Johnson (TB-mBJ) potential in the density functional theory (DFT) computational framework. The obtained results show that the introduction of large-sized Bi impurities into InP increases the lattice constant and reduces the bandgap by 52 meV/Bi%. We have also presented the design of an InP/InP1−xBix/InP planar solar cell (SC) utilizing the computed optical and electronic properties of the investigated InP1-xBix alloy to produce SC with an average absorptance of 65.14% and 62.91% with Bi incorporation of 3.125% and 6.25%, respectively, and an optical current density (Jopt) of 29.45 mA/cm2 for Bi concentration of 6.25%. We also thoroughly analyzed two additional parameters, namely the electric field distribution and photogeneration rate. By adding 6.25% Bi into InP, we obtained a band gap of 1 eV, which is perfect for SC design. With this SC, we got the highest short-circuit current density (Jsc) of 23.23 mA/cm2 and power conversion efficiency (PCE) of 14.53 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合密度泛函理论和有限元法分析评估 InPBi 太阳能电池的光伏功能
这项研究报告了在密度泛函理论(DFT)计算框架中,利用全电位线性化增强平面波(FP-LAPW)基集、Perdew-Burke-Ernzerhof(PBE)交换相关(XC)函数和 Tran Blaha 修正贝克-约翰逊(TB-mBJ)电位,对稀释铋(Bi)的加入对锌混合物(ZB)相磷化铟(InP)的光学和电子特性的影响进行的理论研究。结果表明,在 InP 中引入大尺寸 Bi 杂质会增加晶格常数,并将带隙降低 52 meV/Bi%。我们还介绍了 InP/InP1-xBix/InP 平面太阳能电池(SC)的设计,利用所研究的 InP1-xBix 合金的计算光学和电子特性,在掺入 3.125% 和 6.25% 的 Bi 时,SC 的平均吸收率分别为 65.14% 和 62.91%,在掺入 6.25% 的 Bi 时,光电流密度(Jopt)为 29.45 mA/cm2。我们还深入分析了另外两个参数,即电场分布和光生成率。通过在 InP 中添加 6.25% 的 Bi,我们获得了 1 eV 的带隙,非常适合 SC 设计。利用这种 SC,我们获得了最高的短路电流密度(Jsc),达到 23.23 mA/cm2,功率转换效率(PCE)达到 14.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Photovoltaic functionality assessment of InPBi-based solar cells using a combination of density functional theory and finite element method analysis The role of masking and aperture size for accurate measurement of performance parameters of DSSCs On the closure relationship among shortwave radiometric measurements under a cold climate during winter Performance evaluation of indirect solar drying system for potato slices: Comparative analysis with open-sun drying method The future of photovoltaic energy potential in Africa under higher emission scenarios: Insights from CMIP6 multi-model ensemble analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1