Ice lensing in sandstone walls under monotonic and cyclic climatic conditions

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-11-27 DOI:10.1016/j.ijheatmasstransfer.2024.126473
You Wang, Falk K. Wittel
{"title":"Ice lensing in sandstone walls under monotonic and cyclic climatic conditions","authors":"You Wang,&nbsp;Falk K. Wittel","doi":"10.1016/j.ijheatmasstransfer.2024.126473","DOIUrl":null,"url":null,"abstract":"<div><div>A coupled one-dimensional (1D) thermo-mechanical model is developed to explore the ice lens formation in porous building materials, specifically sandstone, under changing climatic conditions. Heat conduction is coupled to an ice lens model to predict the formation and growth of ice lenses with the change of the temperature profile. Simultaneously, changes in the effective properties of the system due to evolving ice lenses are considered for calculating the temperature profile. Monotonic cooling and cyclic climatic conditions are applied to a sandstone wall to investigate the effects of different material parameters and boundary conditions on ice lensing. Triggering conditions for periodic ice lensing are identified. Finally, the periodic evolution of ice lenses (i.e., growing, melting, and re-freezing) is shown in the simulations under cyclic climatic conditions.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"238 ","pages":"Article 126473"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024013012","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A coupled one-dimensional (1D) thermo-mechanical model is developed to explore the ice lens formation in porous building materials, specifically sandstone, under changing climatic conditions. Heat conduction is coupled to an ice lens model to predict the formation and growth of ice lenses with the change of the temperature profile. Simultaneously, changes in the effective properties of the system due to evolving ice lenses are considered for calculating the temperature profile. Monotonic cooling and cyclic climatic conditions are applied to a sandstone wall to investigate the effects of different material parameters and boundary conditions on ice lensing. Triggering conditions for periodic ice lensing are identified. Finally, the periodic evolution of ice lenses (i.e., growing, melting, and re-freezing) is shown in the simulations under cyclic climatic conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单调和循环气候条件下砂岩壁的冰透镜现象
本研究建立了一个耦合的一维(1D)热机械模型,以探讨在不断变化的气候条件下多孔建筑材料(特别是砂岩)中冰透镜的形成。热传导与冰透镜模型相结合,预测了冰透镜随温度曲线变化而形成和增长的过程。同时,在计算温度曲线时,还考虑了冰透镜演变导致的系统有效特性的变化。将单调冷却和循环气候条件应用于砂岩壁,以研究不同材料参数和边界条件对冰透镜的影响。确定了周期性冰透镜的触发条件。最后,在循环气候条件下的模拟中显示了冰透镜的周期性演变(即生长、融化和再冻结)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Coupling effects among viscosity, viscous dissipation and convective heat transfer in the microscale flow of polymer melt Experimental investigation on gas-liquid two-phase flow patterns and vibration characteristics of an inducer pump The suppression and CO elimination performance of Co3O4 dust cloud for methane-air mixture explosion Boiling performance enhancement and self-recovery of nucleate boiling regime on micro- and nanostructured porous surfaces Predictions of Line Chilldown Boiling Regime Transitions by a Coupled CFD-Subgrid Boiling Model Validated against 1G LN2 Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1