Graphene on Ni surfaces: A personal journey

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2024-11-13 DOI:10.1016/j.susc.2024.122652
Cristina Africh , Maria Peressi , Giovanni Comelli
{"title":"Graphene on Ni surfaces: A personal journey","authors":"Cristina Africh ,&nbsp;Maria Peressi ,&nbsp;Giovanni Comelli","doi":"10.1016/j.susc.2024.122652","DOIUrl":null,"url":null,"abstract":"<div><div>We present a short review of the work we have performed over the last decade in the framework of a scientific program dedicated to characterizing the structure, formation and functionalization of graphene layers grown on Ni surfaces. To this aim, several surface science experimental tools were complemented by numerical simulations mainly based on <em>ab initio</em> methods. In a step-by-step process, both the details and the general trends characterizing the investigated systems became progressively clearer, delineating a unique and consistent story.</div><div>All together the outcome of this intense effort can be regarded as a good example of the level of understanding of a complex problem it is possible to reach through a persistent and systematic approach in which state-of-the-art methods are employed.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"753 ","pages":"Article 122652"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824002036","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a short review of the work we have performed over the last decade in the framework of a scientific program dedicated to characterizing the structure, formation and functionalization of graphene layers grown on Ni surfaces. To this aim, several surface science experimental tools were complemented by numerical simulations mainly based on ab initio methods. In a step-by-step process, both the details and the general trends characterizing the investigated systems became progressively clearer, delineating a unique and consistent story.
All together the outcome of this intense effort can be regarded as a good example of the level of understanding of a complex problem it is possible to reach through a persistent and systematic approach in which state-of-the-art methods are employed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镍表面的石墨烯:个人历程
我们简要回顾了过去十年来在一项科学计划框架内开展的工作,该计划致力于表征生长在镍表面的石墨烯层的结构、形成和功能化。为此,我们使用了多种表面科学实验工具,并辅以主要基于 ab initio 方法的数值模拟。在这个循序渐进的过程中,所研究系统的细节和总体趋势都逐渐清晰起来,勾勒出了一个独特而一致的故事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
Electronic reconfiguration induced by dynamic hydroxyl decoration facilitates electrochemical nitrate reduction to ammonia Editorial Board Thermodynamic and kinetic analysis of the oxygen evolution reaction on TiO2 (100) and (101) surfaces: A DFT study Surface science study on catalytic surfaces under working conditions with soft-X-ray surface spectroscopy at the Photon Factory Time-resolved ambient pressure x-ray photoelectron spectroscopy: Advancing the operando study of ALD chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1