Modeling and control of a protonic membrane steam methane reformer

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-11-21 DOI:10.1016/j.cherd.2024.11.006
Xiaodong Cui , Dominic Peters , Yifei Wang , Berkay Çıtmacı , Derek Richard , Carlos G. Morales-Guio , Panagiotis D. Christofides
{"title":"Modeling and control of a protonic membrane steam methane reformer","authors":"Xiaodong Cui ,&nbsp;Dominic Peters ,&nbsp;Yifei Wang ,&nbsp;Berkay Çıtmacı ,&nbsp;Derek Richard ,&nbsp;Carlos G. Morales-Guio ,&nbsp;Panagiotis D. Christofides","doi":"10.1016/j.cherd.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Steam methane reforming in solid oxide proton conducting membranes is a state-of-the-art process capable of initiating methane reforming reactions, electrochemical hydrogen separation, and the compression of purified hydrogen product within a single electrochemical processing unit. Given the many process variables involved, a model predictive controller is needed to safely operate a protonic membrane reformer (PMR) under dynamic operational conditions by employing physically relevant constraints that protect the reactor materials of construction and maximize the stability of the process. This work derives, and experimentally validates, physics-based models for a PMR process and integrates an overall process model into centralized and decentralized model predictive control schemes. The performance of control actions from classical proportional–integral controllers and model predictive controllers are surveyed, and the decentralized model predictive control algorithm, developed here, obeys practical constraints, reaches the target variables’ setpoints quickly, and lowers computational costs relative to the centralized predictive controller. Finally, the addition of a disturbance observer (DOB) ensures robust controller performance when subject to incomplete and infrequent process measurements or common system disturbances.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 493-519"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026387622400635X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Steam methane reforming in solid oxide proton conducting membranes is a state-of-the-art process capable of initiating methane reforming reactions, electrochemical hydrogen separation, and the compression of purified hydrogen product within a single electrochemical processing unit. Given the many process variables involved, a model predictive controller is needed to safely operate a protonic membrane reformer (PMR) under dynamic operational conditions by employing physically relevant constraints that protect the reactor materials of construction and maximize the stability of the process. This work derives, and experimentally validates, physics-based models for a PMR process and integrates an overall process model into centralized and decentralized model predictive control schemes. The performance of control actions from classical proportional–integral controllers and model predictive controllers are surveyed, and the decentralized model predictive control algorithm, developed here, obeys practical constraints, reaches the target variables’ setpoints quickly, and lowers computational costs relative to the centralized predictive controller. Finally, the addition of a disturbance observer (DOB) ensures robust controller performance when subject to incomplete and infrequent process measurements or common system disturbances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子膜蒸汽甲烷转化炉的建模与控制
在固体氧化物质子传导膜中进行蒸汽甲烷转化是一种最先进的工艺,能够在单个电化学处理单元内启动甲烷转化反应、电化学氢气分离和压缩纯化氢气产品。由于涉及许多工艺变量,因此需要一种模型预测控制器,以便在动态运行条件下安全运行质子膜转化器(PMR),方法是采用与物理相关的约束条件,保护反应器的结构材料,并最大限度地提高工艺的稳定性。这项工作为质子膜转化器过程推导出了基于物理的模型,并通过实验进行了验证,还将整体过程模型集成到了集中式和分散式模型预测控制方案中。研究调查了经典比例积分控制器和模型预测控制器的控制行动性能,这里开发的分散模型预测控制算法遵守实际约束条件,能快速达到目标变量的设定点,并且相对于集中预测控制器降低了计算成本。最后,添加扰动观测器(DOB)可确保控制器在受到不完整、不频繁的过程测量或常见系统扰动时具有稳健的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1