Realizing excellent energy-storage performance under low electric fields in lead-free BiFeO3-BaTiO3-based ceramics with ultrahigh polarization difference

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-27 DOI:10.1016/j.est.2024.114786
Jinbo Zhang , Yongping Pu , Yuxin Hao , YiLe Yang , Lei Zhang , Bo Wang , Qiao Pan
{"title":"Realizing excellent energy-storage performance under low electric fields in lead-free BiFeO3-BaTiO3-based ceramics with ultrahigh polarization difference","authors":"Jinbo Zhang ,&nbsp;Yongping Pu ,&nbsp;Yuxin Hao ,&nbsp;YiLe Yang ,&nbsp;Lei Zhang ,&nbsp;Bo Wang ,&nbsp;Qiao Pan","doi":"10.1016/j.est.2024.114786","DOIUrl":null,"url":null,"abstract":"<div><div>Amidst the swift progress of electronic devices, there's an escalating need for capacitors to attain heightened energy storage capabilities (&gt; 5 J/cm<sup>3</sup>) under low electric fields(&lt; 300 kV/cm), facilitating integration and downsizing. In this research, (0.67-<em>x</em>)BiFeO<sub>3</sub>–0.33BaTiO<sub>3</sub>-<em>x</em>LaAlO<sub>3</sub> (<em>x</em> = 0–0.07) ceramics with ultrahigh polarization difference (<em>ΔP</em> = <em>P</em><sub>max</sub>-<em>P</em><sub>r</sub>) were successfully synthesized via the traditional solid-phase method. Initially, the progressive substitution of LaAlO<sub>3</sub> was found by XRD Rietveld refinement, PFM, and dielectric spectroscopy analysis to lead to a phase transition from the <em>R3c</em> phase to the <em>Pm3m</em> phase, obtaining ultra-small and highly electric field responsive PNRs, thus facilitating the relaxation behavior and achieving low <em>P</em><sub>r</sub> values. Moreover, the introduction of La<sup>3+</sup> enables the 0.67BiFeO<sub>3</sub>–0.33BaTiO<sub>3</sub> ceramics leading to an increased deviation of Bi ions from the centre, which maintains a relatively high <em>P</em><sub>max</sub> to achieve an ultrahigh Δ<em>P</em> (~52.43 μC/cm<sup>2</sup>), resulting in excellent energy storage density (<em>W</em><sub>rec</sub> ~ 5.71 J/cm<sup>3</sup>) under relatively low electric fields (270 kV/cm), along with super temperature stabilities. This study offers an effective pathway to explore the high energy storage capabilities of dielectric capacitors under low fields.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"105 ","pages":"Article 114786"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X2404372X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the swift progress of electronic devices, there's an escalating need for capacitors to attain heightened energy storage capabilities (> 5 J/cm3) under low electric fields(< 300 kV/cm), facilitating integration and downsizing. In this research, (0.67-x)BiFeO3–0.33BaTiO3-xLaAlO3 (x = 0–0.07) ceramics with ultrahigh polarization difference (ΔP = Pmax-Pr) were successfully synthesized via the traditional solid-phase method. Initially, the progressive substitution of LaAlO3 was found by XRD Rietveld refinement, PFM, and dielectric spectroscopy analysis to lead to a phase transition from the R3c phase to the Pm3m phase, obtaining ultra-small and highly electric field responsive PNRs, thus facilitating the relaxation behavior and achieving low Pr values. Moreover, the introduction of La3+ enables the 0.67BiFeO3–0.33BaTiO3 ceramics leading to an increased deviation of Bi ions from the centre, which maintains a relatively high Pmax to achieve an ultrahigh ΔP (~52.43 μC/cm2), resulting in excellent energy storage density (Wrec ~ 5.71 J/cm3) under relatively low electric fields (270 kV/cm), along with super temperature stabilities. This study offers an effective pathway to explore the high energy storage capabilities of dielectric capacitors under low fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在具有超高极化差的无铅 BiFeO3-BaTiO3 基陶瓷中实现低电场下的卓越储能性能
随着电子设备的飞速发展,人们对电容器的要求也越来越高,即在低电场(< 300 kV/cm)条件下实现更高的储能能力(> 5 J/cm3),从而促进电容器的集成化和小型化。本研究通过传统固相法成功合成了具有超高极化差(ΔP = Pmax-Pr)的 (0.67-x)BiFeO3-0.33BaTiO3-xLaAlO3 (x = 0-0.07)陶瓷。最初,通过 XRD Rietveld 精炼、PFM 和介电光谱分析发现,LaAlO3 的渐进取代导致了从 R3c 相到 Pm3m 相的相变,从而获得了超小和高电场响应的 PNR,从而促进了弛豫行为并实现了低 Pr 值。此外,La3+ 的引入使 0.67BiFeO3-0.33BaTiO3 陶瓷的 Bi 离子偏离中心的程度增加,从而保持了相对较高的 Pmax,实现了超高的 ΔP(~52.43 μC/cm2),在相对较低的电场(270 kV/cm)下实现了出色的能量存储密度(Wrec~5.71 J/cm3),并具有超强的温度稳定性。这项研究为探索电介质电容器在低电场下的高能量存储能力提供了一条有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Tailoring hydrogen-bond networks in NaCH₃COO·3H₂O phase change materials: Lotus root starch and carbon nanofiber synergy toward efficient thermal storage Graphene-enhanced thermally flexible polyethylene glycol-based phase change materials for thermal energy storage and management Enhanced harmonic reduction and energy optimization in grid-connected photovoltaic-battery systems for improved power quality Iron–nitrogen-doped eggshell carbon microsphere-encapsulated hollow nanoparticle catalysts for enhanced oxygen reduction reaction in zinc–air batteries Hydrofluoric acid free synthesis of Ti3C2Tx-Fe3O4 composite anode coupled with high voltage NaxMn3O7 cathode for 2.2 V supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1