Jiaqi Liang , Maria Clara Martins Silva , Daniel Aloise , Sanjay Dominik Jena
{"title":"Dynamic rebalancing for Bike-sharing systems under inventory interval and target predictions","authors":"Jiaqi Liang , Maria Clara Martins Silva , Daniel Aloise , Sanjay Dominik Jena","doi":"10.1016/j.ejtl.2024.100147","DOIUrl":null,"url":null,"abstract":"<div><div>Bike-sharing systems have become a popular transportation alternative. Unfortunately, station networks are often unbalanced, with some stations being empty, while others being congested. Given the complexity of the underlying planning problems to rebalance station inventories via trucks, many mathematical optimizations models have been proposed, mostly focusing on minimizing the unmet demand. This work explores the benefits of two alternative objectives, which minimize the deviation from an inventory interval and a target inventory, respectively. While the concepts of inventory intervals and targets better fit the planning practices of many system operators, they also naturally introduce a buffer into the station inventory, therefore better responding to stochastic demand fluctuations. We report on extensive computational experiments, evaluating the entire pipeline required for an automatized and data-driven rebalancing process: the use of synthetic and real-world data that relies on varying weather conditions, the prediction of demand and the computation of inventory intervals and targets, different reoptimization modes throughout the planning horizon, and an evaluation within a fine-grained simulator. Results allow for unanimous conclusions, indicating that the proposed approaches reduce unmet demand by up to 34% over classical models.</div></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":"13 ","pages":"Article 100147"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437624000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Bike-sharing systems have become a popular transportation alternative. Unfortunately, station networks are often unbalanced, with some stations being empty, while others being congested. Given the complexity of the underlying planning problems to rebalance station inventories via trucks, many mathematical optimizations models have been proposed, mostly focusing on minimizing the unmet demand. This work explores the benefits of two alternative objectives, which minimize the deviation from an inventory interval and a target inventory, respectively. While the concepts of inventory intervals and targets better fit the planning practices of many system operators, they also naturally introduce a buffer into the station inventory, therefore better responding to stochastic demand fluctuations. We report on extensive computational experiments, evaluating the entire pipeline required for an automatized and data-driven rebalancing process: the use of synthetic and real-world data that relies on varying weather conditions, the prediction of demand and the computation of inventory intervals and targets, different reoptimization modes throughout the planning horizon, and an evaluation within a fine-grained simulator. Results allow for unanimous conclusions, indicating that the proposed approaches reduce unmet demand by up to 34% over classical models.
期刊介绍:
The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.