Qizhi Cai , Boyu Fan , Jin-Dao Tang , Hui Chen , Guangwei Deng
{"title":"Genuine tripartite entanglement for exciton modes through exciton optomechanics","authors":"Qizhi Cai , Boyu Fan , Jin-Dao Tang , Hui Chen , Guangwei Deng","doi":"10.1016/j.optlastec.2024.112100","DOIUrl":null,"url":null,"abstract":"<div><div>Exciton optomechanics, a hybrid platform facilitating nonlinear interactions among excitons, phonons, and photons, offers unique opportunities to explore light-matter interactions and their intrinsic nonlinearities. In this study, we propose a scheme to generate genuine tripartite entanglement among three exciton modes within an exciton-optomechanical system comprising a semiconductor optomechanical microcavity with three integrated quantum wells. The exciton modes supported by these quantum wells simultaneously interact with an optical cavity mode via a beam-splitter-type interaction and couple to a mechanical vibration mode through a nonlinear deformation potential interaction. By employing experimentally feasible parameters and carefully chosen detunings, the three exciton modes achieve resonance with the Stokes and anti-Stokes sidebands scattered by mechanical motion, enabling genuine tripartite entanglement. Notably, this steady-state entanglement is robust against thermal baths, providing a promising approach for generating excitonic multipartite entanglement.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112100"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224015585","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exciton optomechanics, a hybrid platform facilitating nonlinear interactions among excitons, phonons, and photons, offers unique opportunities to explore light-matter interactions and their intrinsic nonlinearities. In this study, we propose a scheme to generate genuine tripartite entanglement among three exciton modes within an exciton-optomechanical system comprising a semiconductor optomechanical microcavity with three integrated quantum wells. The exciton modes supported by these quantum wells simultaneously interact with an optical cavity mode via a beam-splitter-type interaction and couple to a mechanical vibration mode through a nonlinear deformation potential interaction. By employing experimentally feasible parameters and carefully chosen detunings, the three exciton modes achieve resonance with the Stokes and anti-Stokes sidebands scattered by mechanical motion, enabling genuine tripartite entanglement. Notably, this steady-state entanglement is robust against thermal baths, providing a promising approach for generating excitonic multipartite entanglement.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems