Concept drift monitoring for industrial load forecasting with artificial neural networks

Robin Zink , Borys Ioshchikhes , Matthias Weigold
{"title":"Concept drift monitoring for industrial load forecasting with artificial neural networks","authors":"Robin Zink ,&nbsp;Borys Ioshchikhes ,&nbsp;Matthias Weigold","doi":"10.1016/j.procir.2024.10.065","DOIUrl":null,"url":null,"abstract":"<div><div>Long Short-Term Memory (LSTM) models are frequently applied for industrial energy load forecasting. However, real-world production systems are highly dynamic which poses major challenges. Concept drifts potentially lead to performance degradation that affects systems optimization for the worse. In this work, Concept Drift Detection (CDD) for industrial energy load forecasting with LSTM models is researched. For this purpose, five CDD algorithms are evaluated using the active power of a machine tool. Drift Detection Method (DDM) and Kolmogorov-Smirnov Windowing (KSWIN) proved to be particularly effective with easily interpretable and reasonable hyperparameters.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"130 ","pages":"Pages 120-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124012186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long Short-Term Memory (LSTM) models are frequently applied for industrial energy load forecasting. However, real-world production systems are highly dynamic which poses major challenges. Concept drifts potentially lead to performance degradation that affects systems optimization for the worse. In this work, Concept Drift Detection (CDD) for industrial energy load forecasting with LSTM models is researched. For this purpose, five CDD algorithms are evaluated using the active power of a machine tool. Drift Detection Method (DDM) and Kolmogorov-Smirnov Windowing (KSWIN) proved to be particularly effective with easily interpretable and reasonable hyperparameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络进行工业负荷预测的概念漂移监测
长短期记忆(LSTM)模型经常被用于工业能源负荷预测。然而,现实世界的生产系统是高度动态的,这就带来了重大挑战。概念漂移可能会导致性能下降,从而对系统的优化产生负面影响。在这项工作中,研究了利用 LSTM 模型进行工业能源负荷预测的概念漂移检测(CDD)。为此,利用机床的有功功率对五种 CDD 算法进行了评估。事实证明,漂移检测法(DDM)和 Kolmogorov-Smirnov Windowing (KSWIN) 特别有效,其超参数易于解释且合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1