Efficient Deployment of Machine Learning Models in Manufacturing and Industrial Environments using ROS

Marvin Frisch , Jan Baumgärtner , Imanuel Heider , Alexander Puchta , Jürgen Fleischer
{"title":"Efficient Deployment of Machine Learning Models in Manufacturing and Industrial Environments using ROS","authors":"Marvin Frisch ,&nbsp;Jan Baumgärtner ,&nbsp;Imanuel Heider ,&nbsp;Alexander Puchta ,&nbsp;Jürgen Fleischer","doi":"10.1016/j.procir.2024.10.074","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a deployment concept that aims to overcome the challenges in the implementation of Machine Learning (ML) models in manufacturing and industrial environments. In these contexts, robots are not typically viewed as production machines. However, the potential for applying advanced techniques such as condition monitoring extends beyond production lines to encompass robotic systems. As a result, there arises a need for a modular solution that integrates into the existing ecosystem while accommodating the requirements of robotic environments. By embracing modularity and interoperability, our proposed deployment concept not only addresses the challenges specific to industrial robotics but also fosters a holistic approach to enhancing operational efficiency and performance in diverse manufacturing settings.</div><div>For this, an easily customizable and adjustable system that handles both data acquisition and data transfer is needed. By using the Robot Operating System (ROS) for all necessary data handling, we achieve a highly modular, efficient, and easy-to-use low-code deployment pipeline. Our approach splits the different processing steps into separate nodes and automatically sets up all necessary communication channels, achieving high interchangeability and a quick time-to-deploy. The approach is explained in detail and demonstrated for the real use case of deploying models to monitor handling robots.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"130 ","pages":"Pages 188-193"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124012277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a deployment concept that aims to overcome the challenges in the implementation of Machine Learning (ML) models in manufacturing and industrial environments. In these contexts, robots are not typically viewed as production machines. However, the potential for applying advanced techniques such as condition monitoring extends beyond production lines to encompass robotic systems. As a result, there arises a need for a modular solution that integrates into the existing ecosystem while accommodating the requirements of robotic environments. By embracing modularity and interoperability, our proposed deployment concept not only addresses the challenges specific to industrial robotics but also fosters a holistic approach to enhancing operational efficiency and performance in diverse manufacturing settings.
For this, an easily customizable and adjustable system that handles both data acquisition and data transfer is needed. By using the Robot Operating System (ROS) for all necessary data handling, we achieve a highly modular, efficient, and easy-to-use low-code deployment pipeline. Our approach splits the different processing steps into separate nodes and automatically sets up all necessary communication channels, achieving high interchangeability and a quick time-to-deploy. The approach is explained in detail and demonstrated for the real use case of deploying models to monitor handling robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 ROS 在制造和工业环境中高效部署机器学习模型
本文提出了一种部署概念,旨在克服在制造和工业环境中实施机器学习(ML)模型所面临的挑战。在这些环境中,机器人通常不被视为生产机器。然而,应用先进技术(如状态监测)的潜力已超出生产线,涵盖了机器人系统。因此,需要一种模块化解决方案,既能融入现有生态系统,又能满足机器人环境的要求。通过采用模块化和互操作性,我们提出的部署概念不仅能应对工业机器人技术所特有的挑战,还能在不同的制造环境中促进提高运行效率和性能的整体方法。通过使用机器人操作系统(ROS)进行所有必要的数据处理,我们实现了一个高度模块化、高效且易于使用的低代码部署管道。我们的方法将不同的处理步骤分割成独立的节点,并自动设置所有必要的通信通道,从而实现了高度的互换性和快速部署。我们将详细解释这种方法,并在部署模型以监控搬运机器人的实际使用案例中进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1