Huiying Song , Long Huang , Feng Li , Shaoqing Zhao , Yuqing Liu , Yueting Liu , Ruizhan Zhai , Yongjun Dong , Zexin Feng , Hua Liu
{"title":"Design of random microlens arrays with large scattering angles","authors":"Huiying Song , Long Huang , Feng Li , Shaoqing Zhao , Yuqing Liu , Yueting Liu , Ruizhan Zhai , Yongjun Dong , Zexin Feng , Hua Liu","doi":"10.1016/j.optlastec.2024.112176","DOIUrl":null,"url":null,"abstract":"<div><div>Microlens arrays exhibit significant potential for applications in laser beam expansion, shaping, homogenization, and decoherence. Unfortunately, an increase in the target scattering angle of the microlens results in higher surface curvature. This can lead to a significant reduction in transmittance over a specific scattering angle range, directly affecting beam shaping and homogenization processes. In this paper, a design method for randomized microlens array homogenizing optical element with large scattering angles is proposed. A combination of transmission and total internal reflection (TIR) is used to significantly increase the scattering angle of the microlens arrays while maintaining high transmittance. A method of generating microlens arrays using random edge-length ratios is used to eliminate interference and improve the uniformity of the spot. The study explores the uniformity and energy utilization of random microlens arrays during random degree alteration and analyzes the influence of machining errors on homogenization. To validate the novel method, a random microlens array has been developed, featuring a scattering angle range of ± 41°, remarkable uniformity at 82.31 %, and an energy utilization rate of 85.48 %. This research lays a solid foundation for developing random microlens arrays with large scattering angles.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112176"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224016347","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microlens arrays exhibit significant potential for applications in laser beam expansion, shaping, homogenization, and decoherence. Unfortunately, an increase in the target scattering angle of the microlens results in higher surface curvature. This can lead to a significant reduction in transmittance over a specific scattering angle range, directly affecting beam shaping and homogenization processes. In this paper, a design method for randomized microlens array homogenizing optical element with large scattering angles is proposed. A combination of transmission and total internal reflection (TIR) is used to significantly increase the scattering angle of the microlens arrays while maintaining high transmittance. A method of generating microlens arrays using random edge-length ratios is used to eliminate interference and improve the uniformity of the spot. The study explores the uniformity and energy utilization of random microlens arrays during random degree alteration and analyzes the influence of machining errors on homogenization. To validate the novel method, a random microlens array has been developed, featuring a scattering angle range of ± 41°, remarkable uniformity at 82.31 %, and an energy utilization rate of 85.48 %. This research lays a solid foundation for developing random microlens arrays with large scattering angles.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems