An advanced bifunctional single-element-incorporated ternary perovskite cathode for next-generation fuel cells

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-21 DOI:10.1016/j.jpowsour.2024.235875
Huaqing Ye , Yuhao Wang , Qirui Ye , Xueyang Li , Haoqing Lin , Bote Zhao , Feifei Dong , Meng Ni , Zhan Lin
{"title":"An advanced bifunctional single-element-incorporated ternary perovskite cathode for next-generation fuel cells","authors":"Huaqing Ye ,&nbsp;Yuhao Wang ,&nbsp;Qirui Ye ,&nbsp;Xueyang Li ,&nbsp;Haoqing Lin ,&nbsp;Bote Zhao ,&nbsp;Feifei Dong ,&nbsp;Meng Ni ,&nbsp;Zhan Lin","doi":"10.1016/j.jpowsour.2024.235875","DOIUrl":null,"url":null,"abstract":"<div><div>Bifunctional perovskite oxides are widely considered to be promising cathode materials for the commercialization of fuel cells, with cobalt-rich variants traditionally preferred. However, challenges such as instability at elevated temperatures and high cost hinder their commercial viability. To address these issues, this study successfully develops a high-performance, cobalt-free ternary cathode material, Ba<sub>0.95</sub>Pr<sub>0.05</sub>FeO<sub>3-δ</sub> (BP5F), by substituting a small amount of Pr into the A-site of the perovskite parent BaFeO<sub>3-δ</sub> (BF), tailored for bifunctional applications in both solid oxide fuel cells (SOFCs) and protonic ceramic fuel cells (PCFCs). The incorporation of Pr not only optimizes the crystal phase structure but also enhances the oxygen vacancy concentration and triple-conducting capabilities of BP5F. Consequently, this cathode material exhibits remarkable electrocatalytic activity at intermediate-to-low temperatures (ILT, 400–700 °C), with ultra-low area specific resistances of just 0.028 and 0.134 Ω cm<sup>2</sup> at 600 °C in symmetrical cells with oxygen ion- and proton-conducting electrolytes, respectively. Correspondingly, in single cells, the peak power densities reach up to 1.528 and 1.135 W cm<sup>−2</sup>. Furthermore, BP5F demonstrates exceptional long-term durability, operating stably for over 100 h at 600 °C in both SOFC and PCFC single cells. These performance metrics position BP5F among the best-performing ternary perovskite oxides to date. Experimental results combined with theoretical calculations validate the critical role of Pr, establishing BP5F as a highly promising and economically viable bifunctional candidate perovskite cathode, thus providing a significant step towards the commercial development of fuel cell technologies.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235875"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018275","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bifunctional perovskite oxides are widely considered to be promising cathode materials for the commercialization of fuel cells, with cobalt-rich variants traditionally preferred. However, challenges such as instability at elevated temperatures and high cost hinder their commercial viability. To address these issues, this study successfully develops a high-performance, cobalt-free ternary cathode material, Ba0.95Pr0.05FeO3-δ (BP5F), by substituting a small amount of Pr into the A-site of the perovskite parent BaFeO3-δ (BF), tailored for bifunctional applications in both solid oxide fuel cells (SOFCs) and protonic ceramic fuel cells (PCFCs). The incorporation of Pr not only optimizes the crystal phase structure but also enhances the oxygen vacancy concentration and triple-conducting capabilities of BP5F. Consequently, this cathode material exhibits remarkable electrocatalytic activity at intermediate-to-low temperatures (ILT, 400–700 °C), with ultra-low area specific resistances of just 0.028 and 0.134 Ω cm2 at 600 °C in symmetrical cells with oxygen ion- and proton-conducting electrolytes, respectively. Correspondingly, in single cells, the peak power densities reach up to 1.528 and 1.135 W cm−2. Furthermore, BP5F demonstrates exceptional long-term durability, operating stably for over 100 h at 600 °C in both SOFC and PCFC single cells. These performance metrics position BP5F among the best-performing ternary perovskite oxides to date. Experimental results combined with theoretical calculations validate the critical role of Pr, establishing BP5F as a highly promising and economically viable bifunctional candidate perovskite cathode, thus providing a significant step towards the commercial development of fuel cell technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于下一代燃料电池的先进双功能单元素包合三元过氧化物阴极
双功能过氧化物被广泛认为是燃料电池商业化过程中前景广阔的阴极材料,富钴变体历来是首选。然而,高温下的不稳定性和高成本等挑战阻碍了它们的商业可行性。为了解决这些问题,本研究通过在过氧化物母体 BaFeO3-δ (BF) 的 A 位取代少量 Pr,成功开发出一种高性能、无钴的三元阴极材料 Ba0.95Pr0.05FeO3-δ (BP5F),这种材料专为固体氧化物燃料电池 (SOFC) 和质子陶瓷燃料电池 (PCFC) 的双功能应用而量身定制。Pr 的加入不仅优化了晶相结构,还提高了 BP5F 的氧空位浓度和三重传导能力。因此,这种阴极材料在中低温(ILT,400-700 °C)条件下表现出显著的电催化活性,在 600 °C条件下,氧离子和质子传导电解质对称电池的超低面积比电阻分别仅为 0.028 和 0.134 Ω cm2。相应地,在单电池中,峰值功率密度可达 1.528 和 1.135 W cm-2。此外,BP5F 还具有出色的长期耐久性,在 SOFC 和 PCFC 单电池中均能在 600 °C 下稳定工作 100 小时以上。这些性能指标使 BP5F 成为迄今为止性能最好的三元包晶氧化物之一。实验结果与理论计算相结合,验证了 Pr 的关键作用,使 BP5F 成为一种极具前景和经济可行性的双功能候选包晶阴极,从而为燃料电池技术的商业开发迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Editorial Board Dual ion insertion and oxygen vacancy engineering in nanostructured V2O5 cathodes for enhanced Zn-ion battery performance and stability Molecular framework engineering of sulfur-containing polymers for enhanced ion transport efficiency in Li-S battery Novel anode catalyst layer structure with gradient pore size distribution for highly efficient proton exchange membrane water electrolyzers A variation on the chemical design through cation deficiency: In the case of Sr2Fe1.5Mo0.5O6-δ as the most promising electrode for symmetrical SOFCs and SOECs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1