Jaemin Kim , Songge Yang , Yu Zhong , Geoffrey Tompsett , Seonghun Jeong , Junyoung Mun , Neelam Sunariwal , Jordi Cabana , Zhenzhen Yang , Yan Wang
{"title":"High-entropy Li-rich layered oxide cathode for Li-ion batteries","authors":"Jaemin Kim , Songge Yang , Yu Zhong , Geoffrey Tompsett , Seonghun Jeong , Junyoung Mun , Neelam Sunariwal , Jordi Cabana , Zhenzhen Yang , Yan Wang","doi":"10.1016/j.jpowsour.2024.235915","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy oxides (HEOs) are emerging as promising cathode materials for Li-ion batteries (LIBs) due to their stable solid-state phase and compositional flexibility. Herein, we investigate the structural and electrochemical properties of a novel non-equimolar high-entropy cathode material, termed high-entropy Li-rich layered oxide (HE-LLO, Li<sub>1.15</sub>Na<sub>0.05</sub>Ni<sub>0.19</sub>Mn<sub>0.56</sub>Fe<sub>0.02</sub>Mg<sub>0.02</sub>Al<sub>0.02</sub>O<sub>1.97</sub>F<sub>0.03</sub>), in comparison to a pristine Li-rich layered oxide (PR-LLO, Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub>). The incorporation of multiple cations (Na<sup>+</sup>, Al<sup>3+</sup>, Mg<sup>2+</sup>, Fe<sup>3+</sup>) and anion (F<sup>−</sup>) into HE-LLO introduces compositional diversity, enhancing structural stability through the entropy stabilization effect. Theoretical calculations confirm a significantly higher configurational entropy in HE-LLO compared to PR-LLO, supporting its high-entropy nature. Electrochemical evaluations demonstrate that HE-LLO exhibits considerable capacity retention, preserving 76.8 % of its discharge capacity at 0.5C after 200 cycles, compared to only 36.2 % for PR-LLO. Even under high-temperature conditions, HE-LLO outperformed PR-LLO, maintaining 76.1 % of its discharge capacity after 100 cycles at 5C, while PR-LLO retained only 12.4 %. These enhancements are attributed to the improved phase reversibility and higher Li<sup>+</sup> ion diffusion coefficients of HE-LLO, validated by ex-situ characterizations using a synchrotron X-ray technique, along with density functional theory (DFT) calculations. These findings highlight the promise of non-equimolar HEOs as a novel design strategy for high-performance cathode materials.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235915"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018676","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy oxides (HEOs) are emerging as promising cathode materials for Li-ion batteries (LIBs) due to their stable solid-state phase and compositional flexibility. Herein, we investigate the structural and electrochemical properties of a novel non-equimolar high-entropy cathode material, termed high-entropy Li-rich layered oxide (HE-LLO, Li1.15Na0.05Ni0.19Mn0.56Fe0.02Mg0.02Al0.02O1.97F0.03), in comparison to a pristine Li-rich layered oxide (PR-LLO, Li1.2Ni0.2Mn0.6O2). The incorporation of multiple cations (Na+, Al3+, Mg2+, Fe3+) and anion (F−) into HE-LLO introduces compositional diversity, enhancing structural stability through the entropy stabilization effect. Theoretical calculations confirm a significantly higher configurational entropy in HE-LLO compared to PR-LLO, supporting its high-entropy nature. Electrochemical evaluations demonstrate that HE-LLO exhibits considerable capacity retention, preserving 76.8 % of its discharge capacity at 0.5C after 200 cycles, compared to only 36.2 % for PR-LLO. Even under high-temperature conditions, HE-LLO outperformed PR-LLO, maintaining 76.1 % of its discharge capacity after 100 cycles at 5C, while PR-LLO retained only 12.4 %. These enhancements are attributed to the improved phase reversibility and higher Li+ ion diffusion coefficients of HE-LLO, validated by ex-situ characterizations using a synchrotron X-ray technique, along with density functional theory (DFT) calculations. These findings highlight the promise of non-equimolar HEOs as a novel design strategy for high-performance cathode materials.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems