Geetha N. , D. Kavitha , Duraisamy Kumaresan , E. Venkata Ramana
{"title":"Theoretical study on electrochemical and thermal behavior of GNP incorporated anode materials for lithium-ion batteries","authors":"Geetha N. , D. Kavitha , Duraisamy Kumaresan , E. Venkata Ramana","doi":"10.1016/j.est.2024.114587","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a theoretical investigation of the electrical and thermal performance of lithium-ion batteries employing an unexplored graphene nanoplatelets (GNP) incorporated lithium titanate (LTO-GNP) anode and lithium manganese oxide cathode is demonstrated by using the COMSOL Multiphysics modeling and simulation. The GNP proportions in the LTO active material matrix are varied from 0 to 3 wt%, to assess the improvements in cell potential, state of charge (SOC), variation in internal temperature, discharging capacity, and battery power density across four selected electrodes. The simulation results have indicated the positive effects of increasing the anode’s GNP concentration on the battery performance, alongside temperature-dependent open-circuit voltage (OCV) and SOC outputs of the battery. The analysis of the effects of thermal conductivity on heat accumulation and dissipation within the battery has indicated that the anode with 3 wt% of GNP consistently performed superior to the other electrodes by providing uniform temperature distribution and enhanced electrical performance by promoting better discharge capacity and power density. The LTO anode with 3 wt% GNP has shown 0.2V more cell potential and also has 12.5% improved thermal conductivity when compared to LTO anode without GNP, contributing to better heat distribution inside the battery. The simulation also emphasized the importance of optimal GNP loading in the Li-ion battery anode to attain more uniform temperature distribution with improved battery health and efficiency.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"105 ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041732","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a theoretical investigation of the electrical and thermal performance of lithium-ion batteries employing an unexplored graphene nanoplatelets (GNP) incorporated lithium titanate (LTO-GNP) anode and lithium manganese oxide cathode is demonstrated by using the COMSOL Multiphysics modeling and simulation. The GNP proportions in the LTO active material matrix are varied from 0 to 3 wt%, to assess the improvements in cell potential, state of charge (SOC), variation in internal temperature, discharging capacity, and battery power density across four selected electrodes. The simulation results have indicated the positive effects of increasing the anode’s GNP concentration on the battery performance, alongside temperature-dependent open-circuit voltage (OCV) and SOC outputs of the battery. The analysis of the effects of thermal conductivity on heat accumulation and dissipation within the battery has indicated that the anode with 3 wt% of GNP consistently performed superior to the other electrodes by providing uniform temperature distribution and enhanced electrical performance by promoting better discharge capacity and power density. The LTO anode with 3 wt% GNP has shown 0.2V more cell potential and also has 12.5% improved thermal conductivity when compared to LTO anode without GNP, contributing to better heat distribution inside the battery. The simulation also emphasized the importance of optimal GNP loading in the Li-ion battery anode to attain more uniform temperature distribution with improved battery health and efficiency.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.